Finding exact solutions to the two-dimensional eikonal equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 201-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the two-dimensional eikonal equation $f_x^2+f_y^2=\phi^2$, where $\phi=\frac1{v}$, and $v(x,y)$ is a wavespropagation velocity, is discussed. This non-linear equation is reduced to a quasilinear equation for a new dependent variable $u$. For some kinds of the functions $\phi$, solutions to the quasilinear equations are found. This means that it is possible to solve the original equation for such $\phi$. This paper also offers an approach to finding a new solution based on a known one.
@article{SJVM_2009_12_2_a6,
     author = {E. D. Moskalenskii},
     title = {Finding exact solutions to the two-dimensional eikonal equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--209},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a6/}
}
TY  - JOUR
AU  - E. D. Moskalenskii
TI  - Finding exact solutions to the two-dimensional eikonal equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 201
EP  - 209
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a6/
LA  - ru
ID  - SJVM_2009_12_2_a6
ER  - 
%0 Journal Article
%A E. D. Moskalenskii
%T Finding exact solutions to the two-dimensional eikonal equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 201-209
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a6/
%G ru
%F SJVM_2009_12_2_a6
E. D. Moskalenskii. Finding exact solutions to the two-dimensional eikonal equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 201-209. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a6/

[1] Marchuk An. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Novosibirsk, 1983 | MR | Zbl

[2] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966 | Zbl

[3] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fiziko-matematicheskaya literatura, M., 2003 | Zbl

[4] Megrabov A. G., “O preobrazovaniyakh nekotorykh nelineinykh differentsialnykh uravnenii s pomoschyu gruppovogo podkhoda”, Doklady RAN, 394:6 (2004), 747–751 | MR | Zbl

[5] Borovskikh A. V., “Dvumernoe uravnenie eikonala”, Sibirskii matematicheskii zhurnal, 47:5 (2006), 993–1018 | MR | Zbl

[6] Devenport R., Vysshaya arifmetika, Nauka, M., 1966