Vector spherical harmonics in~3-D vector tomography
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 131-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of series expansion with the aid of vector spherical harmonics intended for inverting line integrated experimental (Doppler) data is proposed to investigate the 3-D vector fields in laboratory plasmas in spherical tokamak devices. A number of numerical computations demonstrating the 3-D reconstruction of the model vector fields have been performed to assess the inversion method proposed.
@article{SJVM_2009_12_2_a1,
     author = {A. L. Balandin},
     title = {Vector spherical harmonics {in~3-D} vector tomography},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {131--143},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a1/}
}
TY  - JOUR
AU  - A. L. Balandin
TI  - Vector spherical harmonics in~3-D vector tomography
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 131
EP  - 143
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a1/
LA  - ru
ID  - SJVM_2009_12_2_a1
ER  - 
%0 Journal Article
%A A. L. Balandin
%T Vector spherical harmonics in~3-D vector tomography
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 131-143
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a1/
%G ru
%F SJVM_2009_12_2_a1
A. L. Balandin. Vector spherical harmonics in~3-D vector tomography. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a1/

[1] Blatt D. Zh., Vaiskopf V., “Prilozhenie II”, Teoreticheskaya yadernaya fizika, IL, Moskva, 1954

[2] Gel'fand I. M., Shapiro Z. Y., “Representation of the group of rotation in three-dimensional space and their applications”, Am. Math. Soc. Transl., 2, 1956, 207–316 | MR

[3] Edmonds A. R., Angular Momentum in Quantum Mechanics, University Press, Prinston, 1957 | MR | Zbl

[4] Freeden W., Gervens T., Schreiner M., Constructive Approximation on the Sphere (With Applications to Geomathematics), Oxford Science Publication, Clarendon Press, 1998 | MR | Zbl

[5] Godunov S. K., Mikhailova T. Yu., Predstavleniya gruppy vrascheniya i sfericheskie funktsii, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[6] Moses H. E., “The use of vector spherical harmonics in global meteorology and aeronomy”, J. Atmospheric Sci., 31 (1974), 1490–1500 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[7] Hill E. H., “The theory of vector spherical harmonics”, Amer. J. Phys., 22 (1953), 211–214 | DOI | MR

[8] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, T. 1, IL, M., 1958

[9] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[10] Balandin A. L., Ono Y., “The method of series expansion for 3-D vector tomography reconstruction”, J. Computational Physics, 202 (2005), 52–64 | DOI | MR | Zbl

[11] Natterer F., Wübbeling F., Mathematical Methods in Image Reconstruction, SIAM, Philadelphia, 2001 | MR

[12] Bidenkharn L., Lauk Dzh., Uglovoi moment v kvantovoi fizike. Teoriya i prilozheniya, T. 1, Mir, M., 1984

[13] Temam P., Navier–Stoks Equations, Theory and Numerical Analysis, Noth-Holland Publ., Amsterdam, 1979 | MR | Zbl

[14] Derevtsov E. Yu., Kazantsev S. G., Schuster Th., “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, J. Ill-Posed Problems, 15:1 (2007), 19–55 | DOI | MR | Zbl

[15] Kazantsev S. G., Bukhgeim A. A., “The chebyshev ridge polynomials in 2D tensor tomography”, J. Ill-Posed Problems, 14:2 (2006), 157–188 | DOI | MR | Zbl

[16] Cantarella J., DeTurck D., Gluck H., “Vector calculus and the topology of domains in 3-space”, Amer. Math. Month., 109:5 (2002), 409–442 | DOI | MR | Zbl

[17] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, VO “Nauka”, Novosibirsk, 1993 | MR | Zbl

[18] Björck, Åke, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996 | MR | Zbl

[19] Wang Ling, “The X-ray transform and its inversion for the series expansion basis functions in three-dimensional tomography”, SIAM J. Appl. Math., 52:5 (1992), 1490–1499 | DOI | MR | Zbl

[20] Bellan Paul M., Fundamentals of Plasma Physics, Cambridge Univ. Press, Cambridge, 2006