Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2009_12_1_a2, author = {V. \`E. Gheit and V. V. Gheit}, title = {On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {29--40}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/} }
TY - JOUR AU - V. È. Gheit AU - V. V. Gheit TI - On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 29 EP - 40 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/ LA - ru ID - SJVM_2009_12_1_a2 ER -
%0 Journal Article %A V. È. Gheit %A V. V. Gheit %T On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2009 %P 29-40 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/ %G ru %F SJVM_2009_12_1_a2
V. È. Gheit; V. V. Gheit. On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/
[1] Korkin A.N., Zolotarev G.I., “Sur une certain minimum”, Nouvelles Annales de mathèmatiques. Sèr. 2, 1873, no. 12, 337–355
[2] Geronimus J., “Sur quelques propriétés extrémales de polynomes dont les coefficients premiers sont donnès”, Soobscheniya Kharkovskogo matematicheskogo obschestva i nauchno-issledovatelskogo instituta matematiki i mekhaniki pri Kharkovskom gosuniversitete. Seriya 4, 12 (1935), 49–59 | Zbl
[3] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976
[4] Peherstorfer F., “Erweiterung des Satzes von Markoff”, Proc. of Conf. «International Series of Numerical Mathematics» (Oberwolfach, 1977), Linear spaces and approximation, 40, Birkhäuser, Basel-Stuttgart, 1978, 423–431 | MR
[5] Peherstorfer F., “On the representation of extremal functions in the $L_1$-Norm”, J. of Approx. Theory, 27:1 (1978), 61–75 | DOI | MR
[6] Peherstorfer F., “Ortogonal polynomials in $L_1$-Approximation”, J. of Approx. Theory, 52:3 (1988), 241–268 | DOI | MR | Zbl
[7] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Dokl. RAN, 370:5 (2000), 583–586 | MR | Zbl
[8] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie — Novosibirsk, 2:3 (1999), 223–238
[9] Geit V.E., “Reshenie odnoi zadachi tipa Zolotareva v metrike $L[-1,1]$”, Dokl. RAN, 387:4 (2002), 443–446 | MR | Zbl
[10] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (vtoroe soobschenie)”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie — Novosibirsk, 4:2 (2001), 123–136
[11] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (trete soobschenie)”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie — Novosibirsk, 6:1 (2003), 37–57
[12] Geit V.E., $L$-problema Zolotareva i approksimatsionnye svoistva dvukh sopryazhennykh funktsii, Dis. ... dokt. fiz.-mat. nauk: 01.01.01, Ekaterinburg, 2003