On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of polynomials $R_{n+5}(x)$, the least deviating from zero in $L[-1,1]$ metric with five given leading coefficients, whose forms were calculated earlier, are studied. Theorems 1, 2 with Theorem A contain a final classification of polynomials $R_{n+5}(x)$, whose number of sign changes in $(-1,1)$ is exactly equal to $(n+1)$.
@article{SJVM_2009_12_1_a2,
     author = {V. \`E. Gheit and V. V. Gheit},
     title = {On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/}
}
TY  - JOUR
AU  - V. È. Gheit
AU  - V. V. Gheit
TI  - On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 29
EP  - 40
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/
LA  - ru
ID  - SJVM_2009_12_1_a2
ER  - 
%0 Journal Article
%A V. È. Gheit
%A V. V. Gheit
%T On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 29-40
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/
%G ru
%F SJVM_2009_12_1_a2
V. È. Gheit; V. V. Gheit. On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/

[1] Korkin A.N., Zolotarev G.I., “Sur une certain minimum”, Nouvelles Annales de mathèmatiques. Sèr. 2, 1873, no. 12, 337–355

[2] Geronimus J., “Sur quelques propriétés extrémales de polynomes dont les coefficients premiers sont donnès”, Soobscheniya Kharkovskogo matematicheskogo obschestva i nauchno-issledovatelskogo instituta matematiki i mekhaniki pri Kharkovskom gosuniversitete. Seriya 4, 12 (1935), 49–59 | Zbl

[3] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976

[4] Peherstorfer F., “Erweiterung des Satzes von Markoff”, Proc. of Conf. «International Series of Numerical Mathematics» (Oberwolfach, 1977), Linear spaces and approximation, 40, Birkhäuser, Basel-Stuttgart, 1978, 423–431 | MR

[5] Peherstorfer F., “On the representation of extremal functions in the $L_1$-Norm”, J. of Approx. Theory, 27:1 (1978), 61–75 | DOI | MR

[6] Peherstorfer F., “Ortogonal polynomials in $L_1$-Approximation”, J. of Approx. Theory, 52:3 (1988), 241–268 | DOI | MR | Zbl

[7] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Dokl. RAN, 370:5 (2000), 583–586 | MR | Zbl

[8] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie — Novosibirsk, 2:3 (1999), 223–238

[9] Geit V.E., “Reshenie odnoi zadachi tipa Zolotareva v metrike $L[-1,1]$”, Dokl. RAN, 387:4 (2002), 443–446 | MR | Zbl

[10] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (vtoroe soobschenie)”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie — Novosibirsk, 4:2 (2001), 123–136

[11] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (trete soobschenie)”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie — Novosibirsk, 6:1 (2003), 37–57

[12] Geit V.E., $L$-problema Zolotareva i approksimatsionnye svoistva dvukh sopryazhennykh funktsii, Dis. ... dokt. fiz.-mat. nauk: 01.01.01, Ekaterinburg, 2003