On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 29-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of polynomials $R_{n+5}(x)$, the least deviating from zero in $L[-1,1]$ metric with five given leading coefficients, whose forms were calculated earlier, are studied. Theorems 1, 2 with Theorem A contain a final classification of polynomials $R_{n+5}(x)$, whose number of sign changes in $(-1,1)$ is exactly equal to $(n+1)$.
@article{SJVM_2009_12_1_a2,
     author = {V. \`E. Gheit and V. V. Gheit},
     title = {On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/}
}
TY  - JOUR
AU  - V. È. Gheit
AU  - V. V. Gheit
TI  - On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 29
EP  - 40
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/
LA  - ru
ID  - SJVM_2009_12_1_a2
ER  - 
%0 Journal Article
%A V. È. Gheit
%A V. V. Gheit
%T On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 29-40
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/
%G ru
%F SJVM_2009_12_1_a2
V. È. Gheit; V. V. Gheit. On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/