On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 29-40
Voir la notice de l'article provenant de la source Math-Net.Ru
The properties of polynomials $R_{n+5}(x)$, the least deviating from zero in $L[-1,1]$ metric with five given leading coefficients, whose forms were calculated earlier, are studied. Theorems 1, 2 with Theorem A contain a final classification of polynomials $R_{n+5}(x)$, whose number of sign changes in $(-1,1)$ is exactly equal to $(n+1)$.
@article{SJVM_2009_12_1_a2,
author = {V. \`E. Gheit and V. V. Gheit},
title = {On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {29--40},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/}
}
TY - JOUR AU - V. È. Gheit AU - V. V. Gheit TI - On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 29 EP - 40 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/ LA - ru ID - SJVM_2009_12_1_a2 ER -
%0 Journal Article %A V. È. Gheit %A V. V. Gheit %T On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2009 %P 29-40 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/ %G ru %F SJVM_2009_12_1_a2
V. È. Gheit; V. V. Gheit. On polynomials, the least deviating from zero in~$L[-1,1]$ metric, with five prescribed coefficients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/SJVM_2009_12_1_a2/