The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 4, pp. 433-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for constructing the cubature formulas on a sphere that are invariant with respect to the icosahedral group of rotations is proposed. This algorithm is applied to construct the new cubature formulas that have the algebraic order of accuracy $n=19, 20,21,23,24,25$. Parameters of these cubature formulas are given to 16 significant digits. The table, which contains the main characteristics of all the best today cubature formulas of the icosahedral group of rotations up to the 35th order of accuracy, is given. A real variant of F. Klein's formula that states the connection between the basic invariant forms of the icosahedral group of rotations is given.
@article{SJVM_2008_11_4_a7,
     author = {A. S. Popov},
     title = {The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {433--440},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 433
EP  - 440
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/
LA  - ru
ID  - SJVM_2008_11_4_a7
ER  - 
%0 Journal Article
%A A. S. Popov
%T The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 433-440
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/
%G ru
%F SJVM_2008_11_4_a7
A. S. Popov. The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 4, pp. 433-440. http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/

[1] Sobolev S. L., “O formulakh mekhanicheskikh kubatur na poverkhnosti sfery”, Sib. mat. zhurn., 3:5 (1962), 769–796 | MR | Zbl

[2] Lebedev V. I., “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zhurn. vychisl. matem. i mat. fiz., 15:1 (1975), 48–54 | Zbl

[3] Lebedev V. I., “O kvadraturakh na sfere”, Zhurn. vychisl. matem. i mat. fiz., 16:2 (1976), 293–306 | MR | Zbl

[4] Lebedev V. I., “Kvadraturnye formuly dlya sfery 25–29-go poryadka tochnosti”, Sib. mat. zhurn., 18:1 (1977), 132–142 | MR | Zbl

[5] Lebedev V. I., “Kvadraturnaya formula 35-go poryadka dlya sfery”, Teoriya kubaturnykh formul i vychisl. matematika, Tr. konf. po diff. uravneniyam i vychisl. matematike, ed. S. L. Sobolev, Nauka, Hovosibirsk, 1980, 110–114

[6] Lebedev V. I., Skorokhodov A. L., “Kvadraturnye formuly dlya sfery 41-, 47- i 53-go poryadkov”, Dokl. RAH, 324:3 (1992), 519–524 | MR | Zbl

[7] Lebedev V. I., “Kvadraturnaya formula dlya sfery 59-go algebraicheskogo poryadka tochnosti”, Dokl. RAH, 338:4 (1994), 454–456 | MR | Zbl

[8] Lebedev V. I., Laikov D. N., “Kvadraturnaya formula dlya sfery 131-go algebraicheskogo poryadka tochnosti”, Dokl. RAH, 366:6 (1999), 741–745 | MR | Zbl

[9] Lebedev V. I., Laikov D. N., “Kvadraturnye formuly dlya sfery gaussova tipa poryadkov 65-, 71-, 77-, 83-, 89-, 95- i 101-go”, Kubaturnye formuly i ikh prilozheniya, Materialy 5-go mezhdunar. seminara-soveschaniya, Krasnoyarsk, 2000, 106–118

[10] Lebedev V. I., Laikov D. N., “Kvadraturnye formuly dlya sfery gaussovogo tipa poryadkov 107-, 113-, 119- i 125-go”, Kubaturnye formuly i ikh prilozheniya, Tr. 6-go mezhdunar. seminara-soveschaniya, Ufa, 2002, 82–94

[11] Popov A. S., “Poisk nailuchshikh kubaturnykh formul dlya sfery, invariantnykh otnositelno gruppy vraschenii oktaedra s inversiei”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 8:2 (2005), 143–148 | Zbl

[12] Konyaev S. I., Kvadraturnye formuly na sfere, invariantnye otnositelno gruppy ikosaedra, Preprint IAE-2516, In-t atomnoi energii AN SSSR, M., 1975

[13] Konyaev S. I., “Kvadratury tipa Gaussa dlya sfery, invariantnye otnositelno gruppy ikosaedra s inversiei”, Mat. zametki, 25:4 (1979), 629–634 | MR | Zbl

[14] Konyaev S. I., “Formuly chislennogo integrirovaniya na sfere”, Teoremy vlozheniya i ikh prilozheniya, Tr. seminara akad. S. L. Soboleva 1, Novosibirsk, 1982, 75–82 | MR | Zbl

[15] Konyaev S. I., Kvadraturnye formuly dlya sfery 23- i 27-go poryadkov, invariantnye otnositelno gruppy ikosaedra s inversiei, Preprint IAE-5072/16, In-t atomnoi energii AN SSSR, M., 1990

[16] McLaren A. D., “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | MR | Zbl

[17] Popov A. S., “Kubaturnye formuly dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i mat. fiz., 35:3 (1995), 459–466 | MR | Zbl

[18] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[19] Klein F., Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Editorial URSS, M., 2004

[20] Savin A. P., “Chislo Fidiya – zolotoe sechenie”, Kvant, 1997, no. 6, 32–33 | MR

[21] Popov A. S., “Kubaturnye formuly vysokikh poryadkov tochnosti dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i mat. fiz., 36:4 (1996), 5–9 | MR | Zbl

[22] Popov A. S., “Poisk nailuchshikh kubaturnykh formul dlya sfery, invariantnykh otnositelno gruppy vraschenii oktaedra”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 5,:4 (2002), 367–372

[23] Ditkin V. A., “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhkratnykh integralov”, Dokl. AN SSSR, 62:4 (1948), 445–447 | MR | Zbl

[24] Ditkin V. A., Lyusternik L. A., “Ob odnom prieme prakticheskogo garmonicheskogo analiza na sfere”, Vychisl. matematika i vychisl. tekhnika, 1, Mashgiz, M., 1953, 3–13 | MR