The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 4, pp. 433-440

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for constructing the cubature formulas on a sphere that are invariant with respect to the icosahedral group of rotations is proposed. This algorithm is applied to construct the new cubature formulas that have the algebraic order of accuracy $n=19, 20,21,23,24,25$. Parameters of these cubature formulas are given to 16 significant digits. The table, which contains the main characteristics of all the best today cubature formulas of the icosahedral group of rotations up to the 35th order of accuracy, is given. A real variant of F. Klein's formula that states the connection between the basic invariant forms of the icosahedral group of rotations is given.
@article{SJVM_2008_11_4_a7,
     author = {A. S. Popov},
     title = {The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {433--440},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 433
EP  - 440
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/
LA  - ru
ID  - SJVM_2008_11_4_a7
ER  - 
%0 Journal Article
%A A. S. Popov
%T The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 433-440
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/
%G ru
%F SJVM_2008_11_4_a7
A. S. Popov. The cubature formulas on a~sphere that are invariant with respect to the icosahedral group of rotations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 4, pp. 433-440. http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a7/