Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2008_11_4_a3, author = {S. A. Gusev}, title = {Estimation of derivatives with respect to parameters of a~functional of a~diffusion process moving in a domain with absorbing boundary}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {385--404}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a3/} }
TY - JOUR AU - S. A. Gusev TI - Estimation of derivatives with respect to parameters of a~functional of a~diffusion process moving in a domain with absorbing boundary JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2008 SP - 385 EP - 404 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a3/ LA - ru ID - SJVM_2008_11_4_a3 ER -
%0 Journal Article %A S. A. Gusev %T Estimation of derivatives with respect to parameters of a~functional of a~diffusion process moving in a domain with absorbing boundary %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2008 %P 385-404 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a3/ %G ru %F SJVM_2008_11_4_a3
S. A. Gusev. Estimation of derivatives with respect to parameters of a~functional of a~diffusion process moving in a domain with absorbing boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 4, pp. 385-404. http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a3/
[1] Gobet E., Munos R., “Sensitivity analysis using Ito-Malliavin calculus and martingales. Application to stochastic optimal control”, SIAM J. Control Optim., 43:5 (2005), 1676–1713 | DOI | MR | Zbl
[2] Gobet E., Munos R., Sensitivity analysis using Ito-Malliavin calculus and martingales., http://www.cmap.polytechnique.fr/preprint/repository/520.pdf
[3] Gobet E., Costantini C., and Karoui N. El., “Boundary sensitivities for diffusion processes in time dependent domains”, Appl. Math. Optimization, 54:2 (2006), 159–187 | DOI | MR | Zbl
[4] Fournie E. et al., “Applications of Malliavin calculus to Monte Carlo methods in finance”, Finance Stochast., 3:4 (1999), 391–412 | DOI | MR | Zbl
[5] Montero M., Kohatsu-Higa A., “Malliavin calculus applied to Finance”, Physica A, 320 (2003), 548–570 | DOI | MR | Zbl
[6] Gusev S. A., “Otsenki metodom Monte-Karlo proizvodnykh po parametram resheniya parabolicheskogo uravneniya na osnove chislennogo resheniya SDU”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 8:4 (2005), 297–306 | Zbl
[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[8] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl
[9] Gobet E., Menozzi S., Stopped diffusion process: overshoots and boundary correction, http://hal.archives-ouvertes.fr/hal-00157975/fr/
[10] Dokuchaev N., “Estimates for distances between first exit times via parabolic equations in unbounded cylinders”, Probab. Theory Relat. Fields, 129 (2004), 290–314 | DOI | MR | Zbl