Convergence of the multigrid cascadic algorithm for second order finite elements in a~domain with a~smooth boundary
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 4, pp. 361-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the cascadic multigrid algorithm for a grid problem obtained by discretization of a second order elliptic equation with second order finite elements on triangles is substantiated. The efficiency of the algorithm is proved. This means that the number of arithmetic operations required to achieve the order of accuracy of an approximate solution equal to that of the discretization error linearly depends on the number of unknowns. The rate of convergence is found to be higher than that for linear finite elements in spite of a higher order of accuracy.
@article{SJVM_2008_11_4_a2,
     author = {L. V. Gilyova and V. V. Shaidurov},
     title = {Convergence of the multigrid cascadic algorithm for second order finite elements in a~domain with a~smooth boundary},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {361--384},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a2/}
}
TY  - JOUR
AU  - L. V. Gilyova
AU  - V. V. Shaidurov
TI  - Convergence of the multigrid cascadic algorithm for second order finite elements in a~domain with a~smooth boundary
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 361
EP  - 384
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a2/
LA  - ru
ID  - SJVM_2008_11_4_a2
ER  - 
%0 Journal Article
%A L. V. Gilyova
%A V. V. Shaidurov
%T Convergence of the multigrid cascadic algorithm for second order finite elements in a~domain with a~smooth boundary
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 361-384
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a2/
%G ru
%F SJVM_2008_11_4_a2
L. V. Gilyova; V. V. Shaidurov. Convergence of the multigrid cascadic algorithm for second order finite elements in a~domain with a~smooth boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 4, pp. 361-384. http://geodesic.mathdoc.fr/item/SJVM_2008_11_4_a2/

[1] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[2] Dautov R. Z., Karchevskii M. M., Vvedenie v teoriyu metoda konechnykh elementov, Kazanskii gos. un-t, Kazan, 2004

[3] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[4] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[5] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[6] Hackbusch W., Multi-grid Methods and Applications, Springer, Berlin–Heidelberg, 1985 | Zbl

[7] Wesseling P., An Introduction to Multigrid Methods, J. Wiley and Sons, Chichester, 1992 | MR

[8] Briggs W. L., Henson V. E., and McCormick S. F., A Multigrid Tutorial, SIAM, Philadelphia, 1999 | MR

[9] Deuflhard P., Cascadic conjugate gradient methods for elliptic partial differential equations. I. Algorithm and numerical results, Technical Report SC 93-23, Konrad-Zuse-Zentrum (ZIB), Berlin, 1993 | MR

[10] Shaidurov V. V., “Some estimates of the rate of convergence for the cascadic conjugate-gradient method”, Comput. Math. Appl., 31:4–5 (1996), 161–171 ; Preprint, Otto-von-Guericke Universität; No 4, Magdeburg, 1994 | DOI | MR | Zbl

[11] Shaidurov V. V., “Some estimates of the rate of convergence for the cascadic conjugate-gradient method”, Computers Math. Applic., 31:4/5 (1996), 161–171 | DOI | MR | Zbl

[12] Bornemann F. A., Deuflhard P., “The cascadic multigrid method for elliptic problems”, Numer. Math., 75 (1996), 135–152 | DOI | MR | Zbl

[13] Shaidurov V. V., Timmermann G., “A cascadic multigrid algorithm for semilinear indefinite elliptic problems”, Computing, 64 (2000), 349–366 | DOI | MR | Zbl

[14] Shaidurov V. V., Tobiska L., “The convergence of the cascadic conjugate-gradient method applied to elliptic problems in domain with re-entrant corners”, Math. Comput., 69:230 (2000), 501–520 | MR | Zbl

[15] Shaidurov V. V., “Cascadic algorithm with nested subspaces in domains with curvilinear boundary”, Advanced Mathematics: Computations and Applications, Computing Center Publisher, Novosibirsk, 1995, 588–595 | MR

[16] Gileva L. V., Shaidurov V. V., “Kaskadnyi mnogosetochnyi algoritm v metode konechnykh elementov dlya trekhmernoi zadachi Dirikhle v oblasti s krivolineinoi granitsei”, Sib. zhurn. vychislit. matematiki / RAN. Sib. otd.-nie. — Novosibirsk, 5:2 (2002), 127–147 | MR | Zbl