Clusters of point matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 341-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

Clusters of point matrices In this paper, in addition to classical orthogonal polynomials, we introduce the orthogonal polynomials of degree $n-1$ at $n$ points. They result from interpolational polynomials. The name "point matrices" is justified by the fact that we do not consider a class of similar or congruent matrices that play the key role in a linear space and connected with its bases. We consider matrices with a fixed set of nodes (or points) $x_1,\dots,x_n$. A certain matrix cluster corresponds to each set of nodes. A simple connection between eigenproblems of the Hunkel matrix $H$ and the symmetric Jacjbi matrix $T$ has been obtained.
@article{SJVM_2008_11_3_a7,
     author = {Yu. I. Kuznetsov},
     title = {Clusters of point matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {341--346},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a7/}
}
TY  - JOUR
AU  - Yu. I. Kuznetsov
TI  - Clusters of point matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 341
EP  - 346
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a7/
LA  - ru
ID  - SJVM_2008_11_3_a7
ER  - 
%0 Journal Article
%A Yu. I. Kuznetsov
%T Clusters of point matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 341-346
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a7/
%G ru
%F SJVM_2008_11_3_a7
Yu. I. Kuznetsov. Clusters of point matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 341-346. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a7/

[1] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M.–L., 1950

[2] Kuznetsov Yu. I., “Matrichno-mnogochlennaya struktura v konechnomernom lineinom vektornom prostranstve”, Sib. mat. zhurn., 42:4 (2001), 815–824 | MR | Zbl

[3] Kuznetsov Yu. I., Matritsy i mnogochleny, ch. II, Izd-vo IVMiMG SO RAN, Novosibirsk, 2004

[4] Kuznetsov Yu. I., “Dopolnenie yakobievoi matritsy”, Sib. zhurn. vychisl. matematiki / RAN Sib. otd-nie. — Novosibirsk, 2:2 (1999), 161–170 | Zbl