Clusters of point matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 341-346
Cet article a éte moissonné depuis la source Math-Net.Ru
Clusters of point matrices In this paper, in addition to classical orthogonal polynomials, we introduce the orthogonal polynomials of degree $n-1$ at $n$ points. They result from interpolational polynomials. The name "point matrices" is justified by the fact that we do not consider a class of similar or congruent matrices that play the key role in a linear space and connected with its bases. We consider matrices with a fixed set of nodes (or points) $x_1,\dots,x_n$. A certain matrix cluster corresponds to each set of nodes. A simple connection between eigenproblems of the Hunkel matrix $H$ and the symmetric Jacjbi matrix $T$ has been obtained.
@article{SJVM_2008_11_3_a7,
author = {Yu. I. Kuznetsov},
title = {Clusters of point matrices},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {341--346},
year = {2008},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a7/}
}
Yu. I. Kuznetsov. Clusters of point matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 341-346. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a7/
[1] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M.–L., 1950
[2] Kuznetsov Yu. I., “Matrichno-mnogochlennaya struktura v konechnomernom lineinom vektornom prostranstve”, Sib. mat. zhurn., 42:4 (2001), 815–824 | MR | Zbl
[3] Kuznetsov Yu. I., Matritsy i mnogochleny, ch. II, Izd-vo IVMiMG SO RAN, Novosibirsk, 2004
[4] Kuznetsov Yu. I., “Dopolnenie yakobievoi matritsy”, Sib. zhurn. vychisl. matematiki / RAN Sib. otd-nie. — Novosibirsk, 2:2 (1999), 161–170 | Zbl