A~finite-variation method in the nonlinear shell mechanics
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 329-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical algorithm is proposed for calculating the coefficients of the first and second order variations of the strain energy of a nonlinear finite element model of a shell, which are necessary to determine the equilibrium states of a shell and investigate their stability. Several numerical schemes based on various finite difference approximations are considered. For these schemes, the accuracy, convergence, and computation time are studied using popular geometrically-nonlinear problems of elastic plates and shells.
@article{SJVM_2008_11_3_a6,
     author = {V. V. Kuznetsov and S. V. Levyakov},
     title = {A~finite-variation method in the nonlinear shell mechanics},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {329--340},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a6/}
}
TY  - JOUR
AU  - V. V. Kuznetsov
AU  - S. V. Levyakov
TI  - A~finite-variation method in the nonlinear shell mechanics
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 329
EP  - 340
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a6/
LA  - ru
ID  - SJVM_2008_11_3_a6
ER  - 
%0 Journal Article
%A V. V. Kuznetsov
%A S. V. Levyakov
%T A~finite-variation method in the nonlinear shell mechanics
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 329-340
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a6/
%G ru
%F SJVM_2008_11_3_a6
V. V. Kuznetsov; S. V. Levyakov. A~finite-variation method in the nonlinear shell mechanics. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 329-340. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a6/

[1] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975

[2] Bathe K. J., Finite Element Procedures, Prentice Hall, New Jersey, 1996

[3] Riks E., “An incremental approach to the solution of snapping and buckling problems”, Int. J. Solids Struct., 15:7 (1979), 529–551 | DOI | MR | Zbl

[4] Grigolyuk E. I.,Shalashilin V. I., Problemy nelineinogo deformirovaniya.Metod prodolzheniya resheniya po parametru v nelineinykh zadachakh mekhaniki tverdogo deformiruemogo tela, Nauka, M., 1988 | MR | Zbl

[5] Memon B.-A., Su X.-Z., “Arc-length technique for nonlinear finite element analysis”, J. Zhejiang Univ. SCI, 5:5 (2004), 618–628 | DOI | Zbl

[6] Kuznetsov V. V., Levyakov S. V., “Utochnennaya geometricheski nelineinaya formulirovka treugolnogo konechnogo elementa tonkoi obolochki”, PMTF, 48:5 (2007), 160–172

[7] Yang Y.-B., Shieh M.-S., “Solution method for nonlinear problems with multiple critical points”, AIAA J., 28 (1990), 2110–2116 | DOI

[8] Kuznetsov V. V., “Rekurrentnye sootnosheniya dlya koeffitsientov variatsii energii nelineinykh uprugikh sistem”, Izv. AN SSSR. Mekhanika tverdogo tela, 1989, no. 4, 182–183

[9] Sze K. Y., Liu X. H., Lo S. H., “Popular benchmark problems for geometric nonlinear analysis of shells”, Finite Elements Anal. Design., 40:11 (2004), 1551–1569 | DOI