Approximation of the Jacobi matrix in $(m,3)$-methods of solving stiff systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 283-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem that the maximal order of accuracy of $L$-stable $(m,k)$-methods with freezing the Jacobi matrix is equal to four.
@article{SJVM_2008_11_3_a3,
     author = {A. L. Dvinsky and E. A. Novikov},
     title = {Approximation of the {Jacobi} matrix in $(m,3)$-methods of solving stiff systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {283--295},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a3/}
}
TY  - JOUR
AU  - A. L. Dvinsky
AU  - E. A. Novikov
TI  - Approximation of the Jacobi matrix in $(m,3)$-methods of solving stiff systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 283
EP  - 295
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a3/
LA  - ru
ID  - SJVM_2008_11_3_a3
ER  - 
%0 Journal Article
%A A. L. Dvinsky
%A E. A. Novikov
%T Approximation of the Jacobi matrix in $(m,3)$-methods of solving stiff systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 283-295
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a3/
%G ru
%F SJVM_2008_11_3_a3
A. L. Dvinsky; E. A. Novikov. Approximation of the Jacobi matrix in $(m,3)$-methods of solving stiff systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 283-295. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a3/

[1] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Computer, 5 (1963), 329–330 | DOI | MR | Zbl

[2] Novikov E. A., Novikov V. A., Yumatova L. A., “Zamorazhivanie matritsy Yakobi v metodakh tipa Rozenbroka vtorogo poryadka tochnosti”, ZhVM i MF, 27:3 (1987), 385–390 | MR

[3] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “Odnoshagovye beziteratsionnye metody resheniya zhestkikh sistem”, DAN SSSR, 301:6 (1988), 1310–1314 | MR

[4] Novikov E. A., Odnoshagovye bezyteratsionnye metody resheniya zhestkikh sistem, Dis. $\dots$ dokt. fiz.-mat. nauk: 01.01.07, Novosibisk, 1991

[5] Novikov E. A., Dvinskii A. L., “$L$-ustoichivaya (5, 2)-skhema chetvertogo poryadka”, Voprosy matem. analiza, Vyp. 8, IPTs KGTU, Krasnoyarsk, 2004, 134–142

[6] Novikov E. A., Golushko M. I., Issledovanie (m, k)-metodov resheniya zhestkikh sistem s tremya vychisleniyami pravoi chasti, Preprint / VTs SO RAN No 5, Krasnoyarsk, 1992

[7] Novikov E. A., Dvinskii A. L., “Zamorazhivanie matritsy Yakobi v (3, 2)-metode resheniya zhestkikh sistem”, Vychislitelnye tekhnologii. — Novosibirsk, 8:3 (2003), 272–278

[8] Dvinskii A. L., Issledovanie (m, k)-metodov s $L$-ustoichivymi promezhutochnymi skhemami dlya resheniya zhestkikh zadach, Diss. $\dots$ kand. fiz.-mat. nauk: 01.01.07, Krasnoyarsk, 2004

[9] Novikov E. A.,Shitov Yu. A., Algoritm integrirovaniya zhestkikh sistem na osnove (m, k)-metoda vtorogo poryadka tochnosti s chislennym vychisleniem matritsy Yakobi, Preprint / VTs SO RAN No 20, Krasnoyarsk, 1988

[10] Golushko M. I., Issledovanie (m, 3)-metodov resheniya zhestkikh sistem, Diss. $\dots$ kand. fiz.-mat. nauk: 01.01.07, Krasnoyarsk, 1993