Enumeration problems of oriented serial sequences
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 271-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sets of $n$-valued $m$-sequences of a serial structure are considered. In addition to the conventional concepts of length of a series and the number of series in a sequence, the concepts of height of a series and series heights sequence are introduced. The structure of the sequences that are called oriented is determined from limitations on the number and the length of series, on order of sequencing of series of various heights. A general approach to solving enumeration problems for sets of such sequences is proposed. It is based on formulas for the number of arrangements of elements in cells and the power of a set of height sequences. Exact solutions for some limitations which are important applications are obtained.
@article{SJVM_2008_11_3_a2,
     author = {V. A. Amelkin},
     title = {Enumeration problems of oriented serial sequences},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {271--282},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a2/}
}
TY  - JOUR
AU  - V. A. Amelkin
TI  - Enumeration problems of oriented serial sequences
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 271
EP  - 282
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a2/
LA  - ru
ID  - SJVM_2008_11_3_a2
ER  - 
%0 Journal Article
%A V. A. Amelkin
%T Enumeration problems of oriented serial sequences
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 271-282
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a2/
%G ru
%F SJVM_2008_11_3_a2
V. A. Amelkin. Enumeration problems of oriented serial sequences. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 271-282. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a2/

[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, Glavnaya redaktsiya fiz.-mat. literatury, M., 1982 | MR | Zbl

[2] Amelkin V. A., “Algoritmy tochnogo resheniya zadach perechisleniya, kodirovaniya i generirovaniya seriinykh posledovatelnostei”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4:1 (2001), 1–12 | MR

[3] Cover T. M., “Enumerative sourse encoding”, IEEE Trans. Inform. Theory, 19:1 (1973), 73–77 | DOI | MR | Zbl

[4] Amelkin V. A., “Pereschet, numeratsiya i generirovanie seriinykh posledovatelnostei s otdelennymi naturalnymi seriyami”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 9:2 (2006), 109–121 | MR

[5] Amelkin V. A., Metody numeratsionnogo kodirovaniya, Nauka, Novosibirsk, 1986 | MR

[6] Liu Bo-lian, “On combinatorical enumeration of keg codewords”, Acta Math. Appl. Sci., 9:1 (1986), 50–59 | Zbl