Analysis of the accuracy of Monter Carlo methods for boundary-value problems using probabilistic representation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 239-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of the accuracy of statistical simulation algorithms are investigated for boundary-value problems of mathematical physics for the elliptic equations. These algorithms are based on a probabilistic representation of these solutions with the use of appropriate systems of the stochastic differential equations. The problems in question are due to the necessity to simulate long SDE trajectories and the estimation of expectation of random variables with asymmetric distribution. Numerical results are given.
@article{SJVM_2008_11_3_a0,
     author = {T. A. Averina and S. S. Artem'ev},
     title = {Analysis of the accuracy of {Monter} {Carlo} methods for boundary-value problems using probabilistic representation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {239--250},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a0/}
}
TY  - JOUR
AU  - T. A. Averina
AU  - S. S. Artem'ev
TI  - Analysis of the accuracy of Monter Carlo methods for boundary-value problems using probabilistic representation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2008
SP  - 239
EP  - 250
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a0/
LA  - ru
ID  - SJVM_2008_11_3_a0
ER  - 
%0 Journal Article
%A T. A. Averina
%A S. S. Artem'ev
%T Analysis of the accuracy of Monter Carlo methods for boundary-value problems using probabilistic representation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2008
%P 239-250
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a0/
%G ru
%F SJVM_2008_11_3_a0
T. A. Averina; S. S. Artem'ev. Analysis of the accuracy of Monter Carlo methods for boundary-value problems using probabilistic representation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 3, pp. 239-250. http://geodesic.mathdoc.fr/item/SJVM_2008_11_3_a0/

[1] Elepov B. S., Kronberg A. A., Mikhailov G. A., Sabelfeld K. K., Reshenie kraevykh zadach metodom Monte-Karlo, Nauka, Novosibirsk, 1980 | MR | Zbl

[2] Ermakov S. M., Nekrutkin V. V., Sipin A. S., Sluchainye protsessy dlya resheniya klassicheskikh uravnenii matematicheskoi fiziki, Nauka, M., 1984 | MR

[3] Venttsel A. D., Kurs teorii sluchainykh protsessov, MGU, M., 1996 | MR

[4] Averina T. A., Artemev S. S., “Chislennoe reshenie stokhasticheskikh differentsialnykh uravnenii s rastuschei dispersiei”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 8:1 (2005), 1–10 | MR | Zbl

[5] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR

[6] Tikhonov V. I., Mironov M. A., Markovskie protsessy, Sov. radio, M., 1977 | MR | Zbl

[7] Gobet E., “Weak approximation of killed diffusion using Euler schemes”, Stochastic processes and their applications, 87 (2000), 167–197 | DOI | MR | Zbl

[8] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd-vo “Akademiya”, M., 2006

[9] Burmistrov A. V., “Improvement of the Euler scheme for the solution of a stationary diffusion equation by extrapolation”, Russian Journal of Numerical Analysis and Mathematical Modelling, 19:6 (2004), 467–476 | DOI | MR | Zbl