A correct flow chart for numerical solution to an inverse problem by optimization method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 2, pp. 139-149
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, two flow charts for solving the same inverse problem by an optimization method are presented. On numerical examples it is shown that the first flow chat often used by researchers requires much more computer costs than the second one. This is because of the necessity of using a fine net and due to an increase in the number of minimization iterations of the residual functional for its decrease up to a certain value.
@article{SJVM_2008_11_2_a2,
author = {A. L. Karchevsky},
title = {A~correct flow chart for numerical solution to an inverse problem by optimization method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {139--149},
year = {2008},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a2/}
}
TY - JOUR AU - A. L. Karchevsky TI - A correct flow chart for numerical solution to an inverse problem by optimization method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2008 SP - 139 EP - 149 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a2/ LA - ru ID - SJVM_2008_11_2_a2 ER -
A. L. Karchevsky. A correct flow chart for numerical solution to an inverse problem by optimization method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 2, pp. 139-149. http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a2/
[1] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR
[2] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR
[3] Karchevskii A. L., “O povedenii funktsionala nevyazki dlya odnomernoi giperbolicheskoi obratnoi zadachi”, Sib. zhurn. vychisl. matematiki, 2:2 (1999), 137–160 | MR
[4] Karchevsky A. L., “Properties of the misfit functional for a nonlinear one-dimentioanal coefficient hyperbolic inverse problem”, J. of Inverse and Ill-posed Problems, 5:2 (1997), 139–163 | DOI | MR | Zbl
[5] Karchevsky A. L., “Finite-difference coefficient inverse problem and properties of the misfit functional”, J. of Inverse and Ill-Posed Problems, 6:5 (1998), 431–452 | DOI | MR | Zbl