Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2008_11_2_a1, author = {S. E. Zhelezovsky}, title = {Error estimate in the projection-difference method for an abstract quasilinear hyperbolic equation with a~non-smooth right-hand side}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {127--137}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a1/} }
TY - JOUR AU - S. E. Zhelezovsky TI - Error estimate in the projection-difference method for an abstract quasilinear hyperbolic equation with a~non-smooth right-hand side JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2008 SP - 127 EP - 137 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a1/ LA - ru ID - SJVM_2008_11_2_a1 ER -
%0 Journal Article %A S. E. Zhelezovsky %T Error estimate in the projection-difference method for an abstract quasilinear hyperbolic equation with a~non-smooth right-hand side %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2008 %P 127-137 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a1/ %G ru %F SJVM_2008_11_2_a1
S. E. Zhelezovsky. Error estimate in the projection-difference method for an abstract quasilinear hyperbolic equation with a~non-smooth right-hand side. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 11 (2008) no. 2, pp. 127-137. http://geodesic.mathdoc.fr/item/SJVM_2008_11_2_a1/
[1] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galerkina dlya abstraktnogo evolyutsionnogo uravneniya vtorogo poryadka s negladkim svobodnym chlenom”, Differents. uravneniya, 40:7 (2004), 944–952 | MR | Zbl
[2] Zhelezovskii S. E., “K otsenkam pogreshnosti metoda Galerkina dlya giperbolicheskikh uravnenii”, Sib. matem. zhurn., 46:2 (2005), 374–389 | MR
[3] Zhelezovskaya L. A.,Zhelezovskii S. E., “O skorosti skhodimosti metoda Rote–Galerkina dlya giperbolicheskikh uravnenii”, Differents. uravneniya, 28:2 (1992), 305–316 | MR
[4] Zhelezovskii S. E., “Otsenki skorosti skhodimosti proektsionno-raznostnogo metoda dlya giperbolicheskikh uravnenii”, Izv. vuzov. Matematika, 2002, no. 1, 21–30 | MR | Zbl
[5] Zhelezovskii S. E., “Otsenki pogreshnosti skhem proektsionno-raznostnogo metoda dlya kvazilineinykh giperbolicheskikh uravnenii”, Differents. uravneniya, 40:6 (2004), 825–833 | MR | Zbl
[6] Zhelezovskii S. E., “K otsenkam pogreshnosti skhem proektsionno-raznostnogo metoda dlya giperbolicheskikh uravnenii”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd.-nie. — Novosibirsk, 7:4 (2004), 309–326
[7] Dendy J. E., Jr., “An analysis of some Galerkin schemes for the solution of nonlinear time-dependent problems”, SIAM J. Numer. Anal., 12:4 (1975), 541–565 | DOI | MR | Zbl
[8] Geveci T., “On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms”, Math. Comput., 42:166 (1984), 393–415 | DOI | MR | Zbl
[9] Kok B., Geveci T., “The convergence of Galerkin approximation schemes for second-order hyperbolic equations with dissipation”, Math. Comput., 44:170 (1985), 379–390 | DOI | MR | Zbl
[10] Yuan Yi-rang, Wang Hong, “The discrete-time finite element methods for nonlinear hyperbolic equations and their theoretical analysis”, J. Comput. Math., 6:3 (1988), 193–204 | MR | Zbl
[11] Zlotnik A. A., “Otsenki skorosti skhodimosti proektsionno-setochnykh metodov dlya giperbolicheskikh uravnenii vtorogo poryadka”, Vychislitelnye protsessy i sistemy, Vyp. 8, Nauka, M., 1991, 116–167 | MR
[12] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[13] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989 | MR
[14] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[15] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR
[16] Morozov N. F., “Issledovanie kolebanii prizmaticheskogo sterzhnya pod deistviem poperechnoi nagruzki”, Izv. vuzov. Matematika, 1965, no. 3, 121–125 | Zbl
[17] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 1981 | MR
[18] Zhelezovskii S. E., “O suschestvovanii i edinstvennosti resheniya i o skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi kvazilineinoi evolyutsionnoi zadachi v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1998, no. 10, 37–45 | MR
[19] Akhiezer N. I., Lektsii po teorii approksimatsii, 2-e izd., Nauka, M., 1965 | MR
[20] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR
[21] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR
[22] Demidovich V. B., “Ob odnom priznake ustoichivosti raznostnykh uravnenii”, Differents. uravneniya, 5:7 (1969), 1247–1255 | Zbl
[23] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[24] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[25] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[26] Mikhlin S. G., “Po povodu metoda Rittsa”, Dokl. AN SSSR, 106:3 (1956), 391–394 | MR