On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 361-370
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper offers a new approach to finding a solution to the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$ with a variable velocity of the waves propagation $V(x,y,z)(\phi=1/V)$. It is based on a certain change of a dependent variable and reduction of the equation to a system of three quasilinear equations. It is shown that for certain cases of the function $V(x,y,z)$, exact solutions to this equation can be found with the help of the approach proposed.
@article{SJVM_2007_10_4_a3,
author = {E. D. Moskalenskii},
title = {On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {361--370},
year = {2007},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/}
}
E. D. Moskalenskii. On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 361-370. http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/
[1] Smirnov V. I., Kurs vysshei matematiki, Tom 4. Chast 2, Nauka, M., 1981
[2] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966 | Zbl
[3] Borovskikh A. V., “Uravnenie eikonala v neodnorodnoi srede”, Doklady RAN, 391:5 (2003), 587–590 | MR
[4] Borovskikh A. V., “Illyuziya dvizhuschegosya istochnika v geometricheskoi optike neodnorodnykh sred”, Differentsialnye uravneniya, 40:7 (2004), 867–873 | MR | Zbl
[5] Megrabov A. G., “O preobrazovaniyakh nekotorykh nelineinykh differentsialnykh uravnenii s pomoschyu gruppovogo podkhoda”, Doklady RAN, 394:6 (2004), 747–751 | MR