Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2007_10_4_a3, author = {E. D. Moskalenskii}, title = {On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {361--370}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/} }
TY - JOUR AU - E. D. Moskalenskii TI - On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$ JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 361 EP - 370 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/ LA - ru ID - SJVM_2007_10_4_a3 ER -
E. D. Moskalenskii. On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 361-370. http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/
[1] Smirnov V. I., Kurs vysshei matematiki, Tom 4. Chast 2, Nauka, M., 1981
[2] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966 | Zbl
[3] Borovskikh A. V., “Uravnenie eikonala v neodnorodnoi srede”, Doklady RAN, 391:5 (2003), 587–590 | MR
[4] Borovskikh A. V., “Illyuziya dvizhuschegosya istochnika v geometricheskoi optike neodnorodnykh sred”, Differentsialnye uravneniya, 40:7 (2004), 867–873 | MR | Zbl
[5] Megrabov A. G., “O preobrazovaniyakh nekotorykh nelineinykh differentsialnykh uravnenii s pomoschyu gruppovogo podkhoda”, Doklady RAN, 394:6 (2004), 747–751 | MR