On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 361-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper offers a new approach to finding a solution to the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$ with a variable velocity of the waves propagation $V(x,y,z)(\phi=1/V)$. It is based on a certain change of a dependent variable and reduction of the equation to a system of three quasilinear equations. It is shown that for certain cases of the function $V(x,y,z)$, exact solutions to this equation can be found with the help of the approach proposed.
@article{SJVM_2007_10_4_a3,
     author = {E. D. Moskalenskii},
     title = {On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {361--370},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/}
}
TY  - JOUR
AU  - E. D. Moskalenskii
TI  - On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 361
EP  - 370
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/
LA  - ru
ID  - SJVM_2007_10_4_a3
ER  - 
%0 Journal Article
%A E. D. Moskalenskii
%T On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 361-370
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/
%G ru
%F SJVM_2007_10_4_a3
E. D. Moskalenskii. On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 361-370. http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/

[1] Smirnov V. I., Kurs vysshei matematiki, Tom 4. Chast 2, Nauka, M., 1981

[2] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966 | Zbl

[3] Borovskikh A. V., “Uravnenie eikonala v neodnorodnoi srede”, Doklady RAN, 391:5 (2003), 587–590 | MR

[4] Borovskikh A. V., “Illyuziya dvizhuschegosya istochnika v geometricheskoi optike neodnorodnykh sred”, Differentsialnye uravneniya, 40:7 (2004), 867–873 | MR | Zbl

[5] Megrabov A. G., “O preobrazovaniyakh nekotorykh nelineinykh differentsialnykh uravnenii s pomoschyu gruppovogo podkhoda”, Doklady RAN, 394:6 (2004), 747–751 | MR