On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 361-370
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper offers a new approach to finding a solution to the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$ with a variable velocity of the waves propagation $V(x,y,z)(\phi=1/V)$. It is based on a certain change of a dependent variable and reduction of the equation to a system of three quasilinear equations. It is shown that for certain cases of the function $V(x,y,z)$, exact solutions to this equation can be found with the help of the approach proposed.
@article{SJVM_2007_10_4_a3,
author = {E. D. Moskalenskii},
title = {On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {361--370},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/}
}
TY - JOUR AU - E. D. Moskalenskii TI - On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$ JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 361 EP - 370 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/ LA - ru ID - SJVM_2007_10_4_a3 ER -
E. D. Moskalenskii. On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 4, pp. 361-370. http://geodesic.mathdoc.fr/item/SJVM_2007_10_4_a3/