Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2007_10_3_a7, author = {E. A. Novikov and A. O. Tuzov}, title = {Six-stages method of order 3 for the solution of additive stiff systems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {307--316}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a7/} }
TY - JOUR AU - E. A. Novikov AU - A. O. Tuzov TI - Six-stages method of order 3 for the solution of additive stiff systems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 307 EP - 316 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a7/ LA - ru ID - SJVM_2007_10_3_a7 ER -
E. A. Novikov; A. O. Tuzov. Six-stages method of order 3 for the solution of additive stiff systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 307-316. http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a7/
[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[2] Cooper G. J., Sayfy A., “Additive Runge–Kutta Methods for Stiff Ordinary Differential Equations”, Mathematics of Computation, 40:161 (1983), 207–218 | DOI | MR | Zbl
[3] Novikov E. A., “Neodnorodnyi metod vtorogo poryadka dlya zhestkikh sistem”, Vychislitelnye tekhnologii, 10:2 (2005), 74–86 | Zbl
[4] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997 | MR
[5] Enright W. H., Hull T. E., “Comparing numerical methods for the solutions of stiff systems of ODE's”, BIT, 15 (1975), 10–48 | DOI | Zbl
[6] Merson R. H., “An operational methods for integration processes”, Proc. Symp. on Data Proc. Weapons Research Establishment, Salisbury, Australia, 1957, 329–330
[7] Fehlberg E., “Classical fifth-, sixth-, seventh- and eighth order Runge–Kutta formulas with step size control”, Computing, 4 (1969), 93–106 | DOI | MR | Zbl
[8] Gear C. W., “The automatic integration of stiff ordinary differential equations”, Proc. IFIP Congress, 1968, 81–85 | MR