Unsplit Perfectly Matched Layer for a~system of equations of dynamic elasticity theory
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 285-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an original approach to the construction of a Perfectly Matched Layer based on the Optimal Grids technique. This PML allows one to reach a suitable reduction of the reflections for all incident angles. The use of the Optimal Grids approach makes it possible to considerably decrease the computational time, because high accuracy of the solution can be reached using a small number of grid points.
@article{SJVM_2007_10_3_a5,
     author = {V. V. Lisitsa},
     title = {Unsplit {Perfectly} {Matched} {Layer} for a~system of equations of dynamic elasticity theory},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a5/}
}
TY  - JOUR
AU  - V. V. Lisitsa
TI  - Unsplit Perfectly Matched Layer for a~system of equations of dynamic elasticity theory
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 285
EP  - 297
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a5/
LA  - ru
ID  - SJVM_2007_10_3_a5
ER  - 
%0 Journal Article
%A V. V. Lisitsa
%T Unsplit Perfectly Matched Layer for a~system of equations of dynamic elasticity theory
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 285-297
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a5/
%G ru
%F SJVM_2007_10_3_a5
V. V. Lisitsa. Unsplit Perfectly Matched Layer for a~system of equations of dynamic elasticity theory. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 285-297. http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a5/

[1] Collino F., Tsogka C., “Application of PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media”, Geophysics, 66 (2001), 294–307 | DOI

[2] Druskin V., Asvadurov S., Guddatti M., Knizhnerman L., “On optimal Finite-DifferenceApproximation of PML”, SINUM, 41 (2003), 287–305 | MR | Zbl

[3] Druskin V., Knizhnerman L., “Gaussian spectral rules for the tree-point second differences: I. A two point positive definite problem in a semi-infinite domain”, SIAM J. Numerical Analysis, 37:2 (1999), 403–422 | DOI | MR

[4] Druskin V., Knizhnerman L., “Gaussian spectral rules for second order finite-difference schemes”, Numerical Algorithms, 25 (2000), 139–159 | DOI | MR | Zbl

[5] Virieux J., “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI