Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2007_10_3_a3, author = {A. I. Zadorin}, title = {Method of interpolation for a~boundary layer problem}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {267--275}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a3/} }
A. I. Zadorin. Method of interpolation for a~boundary layer problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 3, pp. 267-275. http://geodesic.mathdoc.fr/item/SJVM_2007_10_3_a3/
[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248
[2] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i mat. fiziki, 9:4 (1969), 841–890
[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992
[4] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32:144 (1978), 1025–1039 | DOI | MR | Zbl
[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996 | MR