@article{SJVM_2007_10_2_a8,
author = {V. P. Tanana and I. V. Tabarintseva},
title = {On a~method to approximate discontinuous solutions of nonlinear inverse problems},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {221--228},
year = {2007},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a8/}
}
TY - JOUR AU - V. P. Tanana AU - I. V. Tabarintseva TI - On a method to approximate discontinuous solutions of nonlinear inverse problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 221 EP - 228 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a8/ LA - ru ID - SJVM_2007_10_2_a8 ER -
V. P. Tanana; I. V. Tabarintseva. On a method to approximate discontinuous solutions of nonlinear inverse problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 221-228. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a8/
[1] Ageev A. L., “Regulyarizatsiya nelineinykh operatornykh uravnenii na klasse razryvnykh funktsii”, ZhVM i MF, 20:4 (1980), 819–826 | MR | Zbl
[2] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya nekorrektnykh zadach s razryvnymi resheniyami”, ZhVM i MF, 32:3 (1982), 516–531 | MR
[3] Vasin V. V., “Regulyarizatsiya zadachi chislennogo differentsirovaniya”, Matem. zapiski Uralskogo universiteta, 7:2 (1969), 29–33 | MR | Zbl
[4] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, MGU, M., 1999
[5] Tanana V. P., Tabarintseva E. V., “O reshenii nekorrektnoi zadachi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 5:2 (2002), 189–198 | MR | Zbl
[6] Tabarintseva E. V., “Ob otsenke pogreshnosti metoda kvaziobrascheniya pri reshenii zadachi Koshi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 8:3 (2005), 259–271 | MR | Zbl
[7] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1982 | MR | Zbl