On a~method to approximate discontinuous solutions of nonlinear inverse problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 221-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method to approximate discontinuous solutions of nonlinear inverse problems is suggested. An inverse problem for a nonlinear parabolic equation is considered as an example. A sharp error estimation for the constructed approximate solution is obtained.
@article{SJVM_2007_10_2_a8,
     author = {V. P. Tanana and I. V. Tabarintseva},
     title = {On a~method to approximate discontinuous solutions of nonlinear inverse problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {221--228},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a8/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - I. V. Tabarintseva
TI  - On a~method to approximate discontinuous solutions of nonlinear inverse problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 221
EP  - 228
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a8/
LA  - ru
ID  - SJVM_2007_10_2_a8
ER  - 
%0 Journal Article
%A V. P. Tanana
%A I. V. Tabarintseva
%T On a~method to approximate discontinuous solutions of nonlinear inverse problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 221-228
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a8/
%G ru
%F SJVM_2007_10_2_a8
V. P. Tanana; I. V. Tabarintseva. On a~method to approximate discontinuous solutions of nonlinear inverse problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 221-228. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a8/

[1] Ageev A. L., “Regulyarizatsiya nelineinykh operatornykh uravnenii na klasse razryvnykh funktsii”, ZhVM i MF, 20:4 (1980), 819–826 | MR | Zbl

[2] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya nekorrektnykh zadach s razryvnymi resheniyami”, ZhVM i MF, 32:3 (1982), 516–531 | MR

[3] Vasin V. V., “Regulyarizatsiya zadachi chislennogo differentsirovaniya”, Matem. zapiski Uralskogo universiteta, 7:2 (1969), 29–33 | MR | Zbl

[4] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, MGU, M., 1999

[5] Tanana V. P., Tabarintseva E. V., “O reshenii nekorrektnoi zadachi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 5:2 (2002), 189–198 | MR | Zbl

[6] Tabarintseva E. V., “Ob otsenke pogreshnosti metoda kvaziobrascheniya pri reshenii zadachi Koshi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 8:3 (2005), 259–271 | MR | Zbl

[7] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1982 | MR | Zbl