Random walk-on-spheres algorithms for solving mixed and Neumann boundary-value problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 209-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new approach to constructing Monte Carlo methods for solving mixed boundary value problems for elliptic equations with constant coefficients. We derived a mean-value relation for point values of the solution. As a consequence, the walk-on-spheres algorithm can still be used even after a trajectory hits the reflecting boundary. Such an approach is significantly more efficient than the standard one.
@article{SJVM_2007_10_2_a7,
     author = {N. A. Simonov},
     title = {Random walk-on-spheres algorithms for solving mixed and {Neumann} boundary-value problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {209--220},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a7/}
}
TY  - JOUR
AU  - N. A. Simonov
TI  - Random walk-on-spheres algorithms for solving mixed and Neumann boundary-value problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 209
EP  - 220
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a7/
LA  - ru
ID  - SJVM_2007_10_2_a7
ER  - 
%0 Journal Article
%A N. A. Simonov
%T Random walk-on-spheres algorithms for solving mixed and Neumann boundary-value problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 209-220
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a7/
%G ru
%F SJVM_2007_10_2_a7
N. A. Simonov. Random walk-on-spheres algorithms for solving mixed and Neumann boundary-value problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a7/

[1] Elepov B. S., Kronberg A. A., Mikhailov G. A., Sabelfeld K. K., Reshenie kraevykh zadach metodom Monte-Karlo, Nauka, Novosibirsk, 1980 | MR | Zbl

[2] Elepov B. S., Mikhailov G. A., “Algoritmy “bluzhdaniya po sferam” dlya uravneniya $\Delta u-cu=-g$”, Doklady AN SSSR, 212:1 (1973), 15–18 | MR | Zbl

[3] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, Moskva, 1982 | MR

[4] Mikhailov G. A., Makarov R. N., “Reshenie kraevykh zadach vtorogo i tretego roda metodom Monte-Karlo”, Sib. matem. zhurn., 38:3 (1997), 603–614 | Zbl

[5] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, Moskva, 1953 | MR

[6] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Nauka, Moskva, 1957

[7] Simonov N. A., “Algoritmy sluchainogo bluzhdaniya dlya resheniya kraevykh zadach s razbieniem na podoblasti”, Metody i algoritmy statisticheskogo modelirovaniya, VTs SO AN SSSR, Novosibirsk, 1983, 48–58 | MR

[8] Kronberg A. A., “Ob algoritmakh statisticheskogo modelirovaniya resheniya kraevykh zadach ellipticheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 84:10 (1984), 1531–1537 | MR

[9] Haji-Sheikh A., and Sparrow E. M., “The floating random walk and its application to Monte Carlo solutions of heat equations”, SIAM J. Appl. Math., 14:2 (1966), 370–389 | DOI | MR

[10] Milstein G. N., Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[11] Sabelfeld K. K., Monte Carlo methods in boundary value problems, Springer-Verlag, Berlin–Heidelberg–New York, 1991 | MR | Zbl

[12] Sabelfeld K. K., and Simonov N. A., RandomWalks on Boundary for solving PDEs, VSP, Utrecht, 1994 | MR | Zbl

[13] Freidlin M., Functional integration and partial differential equations, Princeton University Press, Princeton, 1985 | MR | Zbl

[14] Kac M., Integration in Function Spaces and Some Its Applications, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 1980 | MR | Zbl

[15] Müller M. E., “Some continuous Monte Carlo methods for the Dirichlet problem”, Ann. Math. Statistics, 27:3 (1956), 569–589 | DOI | MR

[16] Makarov R. N., “Monte Carlo methods for solving boundary value problems of second and third kinds”, Russ. J. Numer. Anal. Math. Modelling, 13:2 (1998), 117–132 | DOI | MR