Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2007_10_2_a7, author = {N. A. Simonov}, title = {Random walk-on-spheres algorithms for solving mixed and {Neumann} boundary-value problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {209--220}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a7/} }
TY - JOUR AU - N. A. Simonov TI - Random walk-on-spheres algorithms for solving mixed and Neumann boundary-value problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 209 EP - 220 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a7/ LA - ru ID - SJVM_2007_10_2_a7 ER -
N. A. Simonov. Random walk-on-spheres algorithms for solving mixed and Neumann boundary-value problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a7/
[1] Elepov B. S., Kronberg A. A., Mikhailov G. A., Sabelfeld K. K., Reshenie kraevykh zadach metodom Monte-Karlo, Nauka, Novosibirsk, 1980 | MR | Zbl
[2] Elepov B. S., Mikhailov G. A., “Algoritmy “bluzhdaniya po sferam” dlya uravneniya $\Delta u-cu=-g$”, Doklady AN SSSR, 212:1 (1973), 15–18 | MR | Zbl
[3] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, Moskva, 1982 | MR
[4] Mikhailov G. A., Makarov R. N., “Reshenie kraevykh zadach vtorogo i tretego roda metodom Monte-Karlo”, Sib. matem. zhurn., 38:3 (1997), 603–614 | Zbl
[5] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, Moskva, 1953 | MR
[6] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Nauka, Moskva, 1957
[7] Simonov N. A., “Algoritmy sluchainogo bluzhdaniya dlya resheniya kraevykh zadach s razbieniem na podoblasti”, Metody i algoritmy statisticheskogo modelirovaniya, VTs SO AN SSSR, Novosibirsk, 1983, 48–58 | MR
[8] Kronberg A. A., “Ob algoritmakh statisticheskogo modelirovaniya resheniya kraevykh zadach ellipticheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 84:10 (1984), 1531–1537 | MR
[9] Haji-Sheikh A., and Sparrow E. M., “The floating random walk and its application to Monte Carlo solutions of heat equations”, SIAM J. Appl. Math., 14:2 (1966), 370–389 | DOI | MR
[10] Milstein G. N., Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl
[11] Sabelfeld K. K., Monte Carlo methods in boundary value problems, Springer-Verlag, Berlin–Heidelberg–New York, 1991 | MR | Zbl
[12] Sabelfeld K. K., and Simonov N. A., RandomWalks on Boundary for solving PDEs, VSP, Utrecht, 1994 | MR | Zbl
[13] Freidlin M., Functional integration and partial differential equations, Princeton University Press, Princeton, 1985 | MR | Zbl
[14] Kac M., Integration in Function Spaces and Some Its Applications, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 1980 | MR | Zbl
[15] Müller M. E., “Some continuous Monte Carlo methods for the Dirichlet problem”, Ann. Math. Statistics, 27:3 (1956), 569–589 | DOI | MR
[16] Makarov R. N., “Monte Carlo methods for solving boundary value problems of second and third kinds”, Russ. J. Numer. Anal. Math. Modelling, 13:2 (1998), 117–132 | DOI | MR