On theory of the duality linear maximin problems with connected variables
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 187-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorems are proved for linear maximin problems with connecting restrictions, for which conditions follows the local optimality of plans of the first players of these problems. This local optimality is due to the concurrence of values of object functions of this problem and the one dual to it.
@article{SJVM_2007_10_2_a5,
     author = {A. R. Mamatov},
     title = {On theory of the duality linear maximin problems with connected variables},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {187--193},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a5/}
}
TY  - JOUR
AU  - A. R. Mamatov
TI  - On theory of the duality linear maximin problems with connected variables
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 187
EP  - 193
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a5/
LA  - ru
ID  - SJVM_2007_10_2_a5
ER  - 
%0 Journal Article
%A A. R. Mamatov
%T On theory of the duality linear maximin problems with connected variables
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 187-193
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a5/
%G ru
%F SJVM_2007_10_2_a5
A. R. Mamatov. On theory of the duality linear maximin problems with connected variables. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 187-193. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a5/

[1] Ivanilov Yu. P., “Dvoistvennye poluigry”, Izvestiya AN SCCR. Tekhnicheskaya kibernetika, 1972, no. 4, 3–9 | MR | Zbl

[2] Germeier Yu. B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976. | MR | Zbl

[3] Lozovanu D. D., “Maksiminnye zadachi so svyazannymi peremennymi i ikh primeneniya k issledovaniyu i resheniyu tsiklicheskikh igr”, Izv. AN SSR Moldova. Matematika, 1990, no. 2, 22–29 | MR | Zbl

[4] Kharitonov I. O., “O vypolnenii sootnoshenii dvoistvennosti v lineinykh maksiminnykh zadach so svyazannymi peremennymi”, Neregulyarnaya dvoistvennost v matematicheskom programmirovanii, Izd-vo UrO AN SSSR, Sverdlovsk, 1990, 68–72

[5] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979 | MR

[6] Falk J. E., “Linear max-min problem”, Math. Prog., 5:2 (1973), 169–188 | DOI | MR | Zbl

[7] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR

[8] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii. Ch. 1. Lineinye zadachi, Izd-vo Universitetskoe, Minsk, 1984 | MR

[9] Mamatov A. R., “Dvoistvennyi algoritm vychisleniya lokalnogo optimuma odnoi maksiminnoi zadachi so svyazannymi peremennymi”, Uzbekskii zhurnal “Problemy informatiki i energetiki”, 2000, no. 1, 7–12

[10] Mamatov A. R., “Algoritm resheniya lineinoi maksiminnoi zadachi so svyazannymi peremennymi”, ZhVMiMF, 45:6 (2005), 1044–1047 | MR | Zbl