@article{SJVM_2007_10_2_a1,
author = {T. A. Averina and A. A. Alifirenko},
title = {The analysis of stability of a~linear oscillator with multiplicative noise},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {127--145},
year = {2007},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a1/}
}
TY - JOUR AU - T. A. Averina AU - A. A. Alifirenko TI - The analysis of stability of a linear oscillator with multiplicative noise JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 127 EP - 145 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a1/ LA - ru ID - SJVM_2007_10_2_a1 ER -
T. A. Averina; A. A. Alifirenko. The analysis of stability of a linear oscillator with multiplicative noise. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 127-145. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a1/
[1] Klyatskin V. I., Stokhasticheskie uravneniya glazami fizika, FIZMATLIT, M., 2001 | MR | Zbl
[2] Marujma G., “Continuous Markov process and stochastic equations”, Rendiconti del Circolo Matematico di Palermo, 4:1 (1955), 48–90 | DOI | MR
[3] Averina T. A., Levykin A. I., Chislennoe reshenie zadachi Koshi dlya sistem stokhasticheskikh differentsialnykh uravnenii vtorogo poryadka, Preprint 1133, Izd-vo VTs SO RAN, Novosibirsk, 1998 | MR
[4] Averina T. A., Artemev S. S., Nekotorye voprosy postroeniya i ispolzovaniya chislennykh metodov dlya resheniya sistem stokhasticheskikh differentsialnykh uravnenii, Preprint 728, Izd-vo VTs SO RAN, Novosibirsk, 1987 | MR
[5] Averina T. A., Artemev S. S., Shurts Kh., Chislennyi analiz stokhasticheskikh avtokolebatelnykh sistem, Preprint 1028, Izd-vo VTs SO RAN, Novosibirsk, 1994
[6] Artemiev S. S., Averina T. A., Numerical analysis of systems of ordinary and stochastic differential equations, VSP, Netherlands, 1997 | MR | Zbl
[7] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl
[8] Artemev S. S., Chislennoe reshenie obyknovennykh i stokhasticheskikh differentsialnykh uravnenii, Metodicheskoe posobie, Izd-vo Novosibirskogo gosudarstvennogo universiteta, Novosibirsk, 1995
[9] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR
[10] Salnikov A. G., “Parametricheskii analiz nekotorykh stokhasticheskikh dinamicheskikh sistem s kolebatelnym resheniem”, Tr. konf. molodykh uchenykh, Izd-vo IVMiMG(VTs) SO RAN, Novosibirsk, 2002, 138–144
[11] Milshtein G. N., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo UGU, Sverdlovsk, 1988 | MR
[12] E. Khairer, S. Nersett, G. Vagner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR
[13] Richardson L. F., “The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam”, Phil. Rans. A, 210 (1910), 307–357 | DOI | Zbl
[14] Talay D., Tubaro L., Expansion of the global error for numerical schemes solving stochastic differential equations, INRIA Report; 1069, Sophia Antipolis, Sophia, 1989 | MR
[15] Gragg W. B., “Repeated extrapolation to the limit in the numerical solution of ordinary differential equations”, SIAM J. Numer. Anal., 2 (1965), 384–403 | MR | Zbl
[16] Romberg W., “Vereinfachte numerische Integration”, Nomke Vid. Selsk Forhdl., 28 (1955), 30–36 | MR | Zbl
[17] Ermakov S. M., Mikhailov G. A., Kurs statisticheskogo modelirovaniya, Nauka, M., 1976 | MR