The analysis of stability of a~linear oscillator with multiplicative noise
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 127-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate a linear SDE of second order in the Ito sense with a multiplicative noise with real parameters. This equation was reduced to a two-dimensional linear SDEs system of first order with the help of replacement of variables. This linear SDEs system is linearization of an arbitrary two-dimensional nonlinear system. We investigate the stability of a trivial solution to a linear system SDE. We obtain conditions for parameters of the system for various modes of stability. We compare the known numerical methods on the solution of an oscillatory system.
@article{SJVM_2007_10_2_a1,
     author = {T. A. Averina and A. A. Alifirenko},
     title = {The analysis of stability of a~linear oscillator with multiplicative noise},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {127--145},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a1/}
}
TY  - JOUR
AU  - T. A. Averina
AU  - A. A. Alifirenko
TI  - The analysis of stability of a~linear oscillator with multiplicative noise
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 127
EP  - 145
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a1/
LA  - ru
ID  - SJVM_2007_10_2_a1
ER  - 
%0 Journal Article
%A T. A. Averina
%A A. A. Alifirenko
%T The analysis of stability of a~linear oscillator with multiplicative noise
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 127-145
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a1/
%G ru
%F SJVM_2007_10_2_a1
T. A. Averina; A. A. Alifirenko. The analysis of stability of a~linear oscillator with multiplicative noise. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 2, pp. 127-145. http://geodesic.mathdoc.fr/item/SJVM_2007_10_2_a1/

[1] Klyatskin V. I., Stokhasticheskie uravneniya glazami fizika, FIZMATLIT, M., 2001 | MR | Zbl

[2] Marujma G., “Continuous Markov process and stochastic equations”, Rendiconti del Circolo Matematico di Palermo, 4:1 (1955), 48–90 | DOI | MR

[3] Averina T. A., Levykin A. I., Chislennoe reshenie zadachi Koshi dlya sistem stokhasticheskikh differentsialnykh uravnenii vtorogo poryadka, Preprint 1133, Izd-vo VTs SO RAN, Novosibirsk, 1998 | MR

[4] Averina T. A., Artemev S. S., Nekotorye voprosy postroeniya i ispolzovaniya chislennykh metodov dlya resheniya sistem stokhasticheskikh differentsialnykh uravnenii, Preprint 728, Izd-vo VTs SO RAN, Novosibirsk, 1987 | MR

[5] Averina T. A., Artemev S. S., Shurts Kh., Chislennyi analiz stokhasticheskikh avtokolebatelnykh sistem, Preprint 1028, Izd-vo VTs SO RAN, Novosibirsk, 1994

[6] Artemiev S. S., Averina T. A., Numerical analysis of systems of ordinary and stochastic differential equations, VSP, Netherlands, 1997 | MR | Zbl

[7] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl

[8] Artemev S. S., Chislennoe reshenie obyknovennykh i stokhasticheskikh differentsialnykh uravnenii, Metodicheskoe posobie, Izd-vo Novosibirskogo gosudarstvennogo universiteta, Novosibirsk, 1995

[9] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[10] Salnikov A. G., “Parametricheskii analiz nekotorykh stokhasticheskikh dinamicheskikh sistem s kolebatelnym resheniem”, Tr. konf. molodykh uchenykh, Izd-vo IVMiMG(VTs) SO RAN, Novosibirsk, 2002, 138–144

[11] Milshtein G. N., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo UGU, Sverdlovsk, 1988 | MR

[12] E. Khairer, S. Nersett, G. Vagner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[13] Richardson L. F., “The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam”, Phil. Rans. A, 210 (1910), 307–357 | DOI | Zbl

[14] Talay D., Tubaro L., Expansion of the global error for numerical schemes solving stochastic differential equations, INRIA Report; 1069, Sophia Antipolis, Sophia, 1989 | MR

[15] Gragg W. B., “Repeated extrapolation to the limit in the numerical solution of ordinary differential equations”, SIAM J. Numer. Anal., 2 (1965), 384–403 | MR | Zbl

[16] Romberg W., “Vereinfachte numerische Integration”, Nomke Vid. Selsk Forhdl., 28 (1955), 30–36 | MR | Zbl

[17] Ermakov S. M., Mikhailov G. A., Kurs statisticheskogo modelirovaniya, Nauka, M., 1976 | MR