Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2007_10_1_a5, author = {V. V. Smelov}, title = {Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two {Sturm--Liouville} problems under mutually symmetric boundary conditions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {89--104}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/} }
TY - JOUR AU - V. V. Smelov TI - Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2007 SP - 89 EP - 104 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/ LA - ru ID - SJVM_2007_10_1_a5 ER -
%0 Journal Article %A V. V. Smelov %T Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2007 %P 89-104 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/ %G ru %F SJVM_2007_10_1_a5
V. V. Smelov. Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/
[1] Smelov V. V., “Approksimatsiya kusochno-gladkikh funktsii sobstvennymi elementami dvukh zadach Shturma–Liuvillya”, Dokl. AN SSSR, 250:3 (1980), 573–577 | MR | Zbl
[2] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystro-skhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000
[3] Smelov V. V., “E.ective approximation of piecewise smooth functions by their expansion into fast convergent series in terms by eigenfunctions of Sturm-Liouville problems”, Russian J. Numer. Anal. Math. Modelling, 19:5 (2004), 449–465 | DOI | MR | Zbl
[4] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR
[5] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii, Nauka, M., 1979 | MR | Zbl
[6] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1965 | MR | Zbl
[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[8] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR
[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, GITTL, M.–L., 1948
[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[11] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[12] Smelov V. V., “Lokalnyi algoritm gladkoi approksimatsii priblizhennykh konechno-raznostnykh i negladkikh variatsionnykh reshenii zadach”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4:1 (2001), 51–60
[13] Smelov V. V., “Ob obobschennom reshenii dvumernoi ellipticheskoi zadachi s kusochno- postoyannymi koeffitsientami na osnove rasschepleniya differentsialnogo operatora i ispolzovaniya spetsificheskikh bazisnykh funktsii”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 6:1 (2003), 59–72 | Zbl