Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 89-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for construction of specific basis functions is formulated. This method is based on eigenfunctions of the two general Sturm–Liouville problems under two different mutually symmetric versions of boundary conditions. The expansion of smooth and piecewise smooth functions leads to rapidly convergent series. This result is the basis for approximation of the above-mentioned functions by means of a small number of terms.
@article{SJVM_2007_10_1_a5,
     author = {V. V. Smelov},
     title = {Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two {Sturm--Liouville} problems under mutually symmetric boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/}
}
TY  - JOUR
AU  - V. V. Smelov
TI  - Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 89
EP  - 104
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/
LA  - ru
ID  - SJVM_2007_10_1_a5
ER  - 
%0 Journal Article
%A V. V. Smelov
%T Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 89-104
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/
%G ru
%F SJVM_2007_10_1_a5
V. V. Smelov. Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a5/

[1] Smelov V. V., “Approksimatsiya kusochno-gladkikh funktsii sobstvennymi elementami dvukh zadach Shturma–Liuvillya”, Dokl. AN SSSR, 250:3 (1980), 573–577 | MR | Zbl

[2] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystro-skhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000

[3] Smelov V. V., “E.ective approximation of piecewise smooth functions by their expansion into fast convergent series in terms by eigenfunctions of Sturm-Liouville problems”, Russian J. Numer. Anal. Math. Modelling, 19:5 (2004), 449–465 | DOI | MR | Zbl

[4] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR

[5] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii, Nauka, M., 1979 | MR | Zbl

[6] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1965 | MR | Zbl

[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[8] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, GITTL, M.–L., 1948

[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[11] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[12] Smelov V. V., “Lokalnyi algoritm gladkoi approksimatsii priblizhennykh konechno-raznostnykh i negladkikh variatsionnykh reshenii zadach”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4:1 (2001), 51–60

[13] Smelov V. V., “Ob obobschennom reshenii dvumernoi ellipticheskoi zadachi s kusochno- postoyannymi koeffitsientami na osnove rasschepleniya differentsialnogo operatora i ispolzovaniya spetsificheskikh bazisnykh funktsii”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 6:1 (2003), 59–72 | Zbl