Error estimation of computing a~multivariable function and its gradient
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Graphs for the calculation of composite functions of multiple variables, the duality principle for obtaining the composite function gradient are described. Algorithms for the estimation of the computation error of the composite function and its gradient are presented.
@article{SJVM_2007_10_1_a4,
     author = {M. Yu. Senashova},
     title = {Error estimation of computing a~multivariable function and its gradient},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a4/}
}
TY  - JOUR
AU  - M. Yu. Senashova
TI  - Error estimation of computing a~multivariable function and its gradient
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 77
EP  - 88
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a4/
LA  - ru
ID  - SJVM_2007_10_1_a4
ER  - 
%0 Journal Article
%A M. Yu. Senashova
%T Error estimation of computing a~multivariable function and its gradient
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 77-88
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a4/
%G ru
%F SJVM_2007_10_1_a4
M. Yu. Senashova. Error estimation of computing a~multivariable function and its gradient. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a4/

[1] Lebedev A. N., Smolov V. B. i dr., Proektirovanie i raschet vychislitelnykh mashin nepreryvnogo deistviya, ed. A. N. Lebedev, Mashinostroenie, M., 1966 | Zbl

[2] Lebedev A. N., Osnovy teorii tochnosti schetno-reshayuschikh ustroistv, Ch. 1, Izd. LETI im. V. I. Lenina, L., 1964

[3] Malikov I. M., Polovko A. M., Romanov N. A., Chukreev P. L., Osnovy teorii i rascheta nadezhnosti, Sudpromgiz, L., 1960

[4] Gorban A. N., Senashova M. Yu., “Bystroe differentsirovanie, dvoistvennost i obratnoe rasprostranenie oshibok”, Vychislitelnye tekhnologii / Izdatelstvo SO RAN. — Novosibirsk, 4 (1999), 55–68 | MR | Zbl

[5] Senashova M. Yu., “Bystroe differentsirovanie slozhnykh funktsii mnogikh peremennykh”, Radioelektronika. Informatika. Upravlinnya / Zaporozhskii gos. tekhn. universitet. — Zaporozhe, 2000, no. 1, 101–106

[6] Rummelhart D. E., Hinton G. E., Williams R. J., “Learning representations by back-propagating errors”, Nature, 323 (1986), 533–536 | DOI

[7] Gorban A. N., Obuchenie neironnykh setei, SP ParaGraf, M., 1990

[8] Gorban A. N., Dunin-Barkovskii V. L., Kirdin A. N. i dr., Neiroinformatika, Nauka, Novosibirsk, 1998

[9] Rummelhart D. E., Hinton G. E., Williams R. J., “Learning internal representation by error propagation”, Parallel Distributed Processing: Exploration in the Microstructure of Cognition, Vol. 1, MIT Press, MA, Greate Britain, 1986, 318–362

[10] Bartsev S. I., Gilev S. E., Okhonin V. A., “Printsip dvoistvennosti v organizatsii adaptivnykh sistem obrabotki informatsii”, Dinamika khimicheskikh i biologicheskikh sistem, Nauka, Novosibirsk, 1989, 6–55

[11] Senashova M. Yu., “Slozhnye funktsii mnogikh peremennykh. Otsenki pogreshnostei vychisleniya”, Neirokompyutery: razrabotka i primenenie. — M.: Izdatelskoe predpriyatie redaktsii zhurnala “Radiotekhnika”, 2002, no. 4, 52–56

[12] Senashova M. Yu., “Otsenki pogreshnostei vychisleniya slozhnoi funktsii mnogikh peremennykh”, Radioelektronika. Informatika. Upravlinnya / Zaporozhskii gos. tekhn. universitet. — Zaporozhe, 2001, no. 2, 114–117

[13] Senashova M. Yu., “Pogreshnosti neironnykh setei. Vychislenie pogreshnostei vesov sinapsov”, Metody neiroinformatiki, Otv. za vyp. M. G. Dorrer (Sb. nauchn. trudov), eds. A. N. Gorban, KGTU, Krasnoyarsk, 1998, 48–64