On modeling of hydraulic bore propagation at incline bank
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 43-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the numerical algorithm for the hydraulic bore propagation onto a dry channel on the basis of the shallow water equations is proposed. This algorithm is based on a modified total momentum conservation law. The results of numerical simulation of generation, propagation and run-up onto the inclined shore of the hydraulic bore, arising after the total or partial (in the two-dimensional case) dam-break, and of the wave like tsunami, arising after a quick local bottom rise.
@article{SJVM_2007_10_1_a2,
     author = {N. M. Borisova},
     title = {On modeling of hydraulic bore propagation at incline bank},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {43--60},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a2/}
}
TY  - JOUR
AU  - N. M. Borisova
TI  - On modeling of hydraulic bore propagation at incline bank
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 43
EP  - 60
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a2/
LA  - ru
ID  - SJVM_2007_10_1_a2
ER  - 
%0 Journal Article
%A N. M. Borisova
%T On modeling of hydraulic bore propagation at incline bank
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 43-60
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a2/
%G ru
%F SJVM_2007_10_1_a2
N. M. Borisova. On modeling of hydraulic bore propagation at incline bank. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a2/

[1] Stoker Dzh. Dzh., Volny na vode, Izd-vo inostr. lit., M., 1959

[2] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Sib. otd-nie, Novosibirsk, 1993 | MR

[3] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[4] Ostapenko V. V., Giperbolicheskie sistemy zakonov sokhraneniya i ikh prilozhenie k teorii melkoi vody (kurs lektsii), Izd-vo NGU, Novosibirsk, 2004

[5] Vasilev O. F., Gladyshev M. T., “O raschete preryvnykh voln v otkrytykh ruslakh”, Izv. AN SSSR. MZhG, 1966, no. 6, 120–123

[6] Ostapenko V. V., “O skvoznom raschete preryvnykh voln”, Zhurn. vychisl. matem. i mat. fiz., 33:5 (1993), 743–752 | MR | Zbl

[7] Belikov V. V., Semenov A. Yu., “Chislennyi metod raspada razryva dlya resheniya uravnenii teorii melkoi vody”, Zhurn. vychisl. matem. i mat. fiz., 37:8 (1997), 1006–1019 | MR | Zbl

[8] Voevodin A. F., Ostapenko V. V., “O raschete preryvnykh voln v otkrytykh ruslakh”, Sib. zhurn. vychisl. matematiki / RAN Sib. otd-nie. — Novosibirsk, 3:4 (2000), 305–321 | Zbl

[9] Delis A., Skeels C. P., “TVD schemes for open channal flow”, Int. J. Numer. Methods in Fluids, 26 (1998), 791–809 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[10] Wang J., Ni H., He Y., “Finite-di.erence TVD schemes for computation of dam-breeak problems”, J. Hydr. Engrg. ASCE, 126 (2000), 253–262 | DOI

[11] Gottardi G., Venutelli M., “Central schemes for open channal flow”, Int. J. Numer. Methods in Fluids, 41 (2003), 841–861 | DOI | Zbl

[12] Shokin Yu. I., Chubarov L. B., Marchuk A. G., Simonov K. V., Vychislitelnyi eksperiment v problemme tsunami, Nauka, Sib. otd-nie, Novosibirsk, 1989

[13] Ritter A., “Die fortpflanzung der wasserwellen”, Z. Ver. Deut. Ing., 36 (1892)

[14] Dressler R. F., “Hydraulic resistance e.ect upon the dam-break functions”, J. of Research of N.B.S., 49:3 (1952), 217–225 | MR

[15] Whitham G. B., “The effects of hydraulic resistance in the dambreak problem”, Proc. of the Royal Society, Ser. A, 227:117 (1955), 399–407, (RZh Mekhanika, ref. 7419. — 1960.– No 6.) | DOI | MR | Zbl

[16] Sudobicher V. G., Shugrin S. M., “Dvizhenie potoka vody po sukhomu ruslu”, Izv. SO AN SSSR. Ser. tekhn. nauk, 13:3 (1968), 116–122

[17] Martin J. C., Moyce W. J., “An experimental study of the collaps of liquid columns on a rigid horizontal plane”, Phil. Trans. Royal Society London A, 244 (1952), 312–324 | DOI

[18] Dressler R. F., “Comparison of theories and experiments for the hydraulic dam-break wave”, Int. Assoc. Sci. Hydrology, 3:38 (1954), 319–328

[19] Stansby P. K., Chegini A., Barnes T. C. D., “The initial stages of dam-break flow”, J. Fluid Mech., 374 (1998), 407–424 | DOI | MR | Zbl

[20] Bukreev V. I., Gusev A. V., Malysheva A. A., Malysheva I. A., “Eksperimentalnaya proverka gazo-gidravlicheskoi analogii na primere zadachi o razrushenii plotiny”, Izv. RAN. MZhG, 2004, no. 5, 143–152

[21] Bukreev V. I., Gusev A. V., “Nachalnaya stadiya generatsii voln pri razrushenii plotiny”, DAN, 401:5 (2005), 619–622

[22] Borisova N. M., Ostapenko V. V., “O chislennom modelirovanii protsessa rasprostraneniya preryvnykh voln po sukhomu ruslu”, Zhurn. vychisl. matem. i mat. fiz., 46:7 (2006), 1322–1344 | MR

[23] Colicchio G., Colagrossi A., Greco M., Landrini M., “Free-surface flow after a dam break: a comparative study”, Shi. Stechnik (Ship Technology Research), 49:3 (2002), 95–104

[24] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[25] Friedrichs K. O., Lax P. D., “Systems of conservation equation with convex extension”, Proc. Nat. Acad. Sci: USA, 68:8 (1971), 1686–1688 | DOI | MR | Zbl

[26] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl

[27] Ostapenko V. V., “Ustoichivye udarnye volny v dvukhsloinoi “melkoi vode””, Prikl. matem. i mekhan., 65:1 (2001), 94–113 | MR | Zbl

[28] Ostapenko V. V., “Chislennoe modelirovanie volnovykh techenii, vyzvannykh skhodom beregovogo opolznya”, Prikladn. matem. i tekhn. fizika, 40:4 (1999), 109–117 | Zbl

[29] Ostapenko V. V., “Techeniya, voznikayuschie pri razrushenii plotiny nad stupenkoi dna”, PMTF, 44 (2003), 51–63 | MR | Zbl

[30] Ostapenko V. V., “Techeniya, voznikayuschie pri razrushenii plotiny nad ustupom dna”, PMTF, 44:6 (2003), 107–122 | MR | Zbl

[31] Bukreev V. I., Gusev A. V., Ostapenko V. V., “Raspad razryva svobodnoi poverkhnosti zhidkosti nad ustupom dna kanala”, Izv. RAN. MZhG, 2003, no. 6, 72–83 | Zbl

[32] Bukreev V. I., Gusev A. V., Ostapenko V. V., “Volny v otkrytom kanale, obrazuyuschiesya pri udalenii schita pered nerovnym dnom tipa shelfa”, Vodnye resursy, 31:5 (2004), 540–546

[33] Jensen A., Pedersen G. K., Wood D. J., “An experimental study of wave run-up at a steep beach”, J. Fluid Mech., 486 (2003), 161–188 | DOI | Zbl