Optimal error of numerical integration with regard to function values at integration points
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 29-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider a corrected definition for the numerical integration error norm with regard to function values at integration points. Optimal and suboptimal integration formulas are obtained for different functional spaces.
@article{SJVM_2007_10_1_a1,
     author = {N. K. Bakirov},
     title = {Optimal error of numerical integration with regard to function values at integration points},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {29--42},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a1/}
}
TY  - JOUR
AU  - N. K. Bakirov
TI  - Optimal error of numerical integration with regard to function values at integration points
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 29
EP  - 42
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a1/
LA  - ru
ID  - SJVM_2007_10_1_a1
ER  - 
%0 Journal Article
%A N. K. Bakirov
%T Optimal error of numerical integration with regard to function values at integration points
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 29-42
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a1/
%G ru
%F SJVM_2007_10_1_a1
N. K. Bakirov. Optimal error of numerical integration with regard to function values at integration points. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 29-42. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a1/

[1] Turetskii A. Kh., “Ob otsenkakh priblizhenii kvadraturnymi formulami dlya funktsii, udovletvoryayuschikh usloviyu Lipshitsa”, UMN, 6:5(45) (1951), 166–171 | MR

[2] Nikolskii S. M., Kvadraturnye formuly, Izd. 3-e s dobavleniem N. P. Korneichuka, Nauka, M., 1979 | MR