Iterative method for computing time optimal control in real time mode
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 1-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a simple method for forming a piecewise constant finite control in the real-time mode, which transfers a linear system from any initial state to the origin in a fixed time. The relations for a sequence of finite controls to be transformed into the fast time optimal control are obtained. Computations are carried out while the system is monitored. The iterative process of computing the optimal control reduces to a sequence of solutions to linear algebraic equations and the Cauchy problems. Effective techniques for setting an initial approximation are proposed, which significantly decrease the number of iterations. A sequence of finite controls is proved to converge to the time optimal control. Results of modeling and computing are given.
@article{SJVM_2007_10_1_a0,
     author = {V. M. Aleksandrov},
     title = {Iterative method for computing time optimal control in real time mode},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--28},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a0/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Iterative method for computing time optimal control in real time mode
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2007
SP  - 1
EP  - 28
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a0/
LA  - ru
ID  - SJVM_2007_10_1_a0
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Iterative method for computing time optimal control in real time mode
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2007
%P 1-28
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a0/
%G ru
%F SJVM_2007_10_1_a0
V. M. Aleksandrov. Iterative method for computing time optimal control in real time mode. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 10 (2007) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/SJVM_2007_10_1_a0/

[1] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie v rezhime realnogo vremeni”, Vtoraya Mezhdunar. konf. po problemam upravleniya, Plenarnye doklady (17–19 iyunya 2003 g.), Institut problem upravleniya, M., 2003, 20–47

[2] Aleksandrov V. M., “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya”, Zhurn. vychisl. matem. i mat. fiz., 39:9 (1999), 1464–1478 | MR | Zbl

[3] Aleksandrov V. M., “Skhodimost metoda posledovatelnogo sinteza optimalnogo po bystrodeistviyu upravleniya”, Zhurn. vychisl. matem. i mat. fiz., 39:10 (1999), 1650–1661 | MR | Zbl

[4] Aleksandrov V. M., “Priblizhennoe reshenie zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 1998, no. 12, 3–13

[5] Aleksandrov V. M., “Reshenie zadach optimalnogo upravleniya na osnove metoda kvazioptimalnogo upravleniya”, Tr. Instituta matematiki SO AN SSSR. Modeli i metody optimizatsii, 10, Nauka, Novosibirsk, 1988, 18–54

[6] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurn. vychisl. matem. i mat. fiz., 38:6 (1998), 918–931 | MR | Zbl

[7] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[8] Andreev Yu. N., “Algebraicheskie metody prostranstva sostoyanii v teorii upravleniya lineinymi sistemami (obzor zarubezhnoi literatury)”, Avtomatika i telemekhanika, 1977, no. 3, 5–50 | Zbl

[9] Smirnov E. Ya., Nekotorye zadachi matematicheskoi teorii upravleniya, Izd-vo LGU, L., 1981 | MR | Zbl

[10] Kalman R. E., “Mathematical description of linear dynamical systems”, SIAM J. Control., 1 (1963), 152–192 | MR | Zbl

[11] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000