@article{SJVM_2006_9_4_a5,
author = {R. V. Shamin},
title = {On a~numerical method for problem of a~non-stationary flow of incompressible fluid with a~free surface},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {379--389},
year = {2006},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a5/}
}
TY - JOUR AU - R. V. Shamin TI - On a numerical method for problem of a non-stationary flow of incompressible fluid with a free surface JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2006 SP - 379 EP - 389 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a5/ LA - ru ID - SJVM_2006_9_4_a5 ER -
R. V. Shamin. On a numerical method for problem of a non-stationary flow of incompressible fluid with a free surface. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 379-389. http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a5/
[1] Nalimov V. I., “Nestatsionarnye vikhrevye volny”, Sib. matem. zhurn., 37:6 (1996), 1356–1366 | MR | Zbl
[2] Nalimov V. I., “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 18, Novosibirsk, 1974, 104–210 | MR
[3] Solonnikov V. A., “Razreshimost zadachi ob evolyutsii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu, na konechnom intervale vremeni”, Algebra i analiz, 3:1 (1991), 222–257 | MR | Zbl
[4] Protopopov B. E., “Chislennoe modelirovanie poverkhnostnykh voln v kanale peremennoi glubiny”, Vychislitelnye metody prikladnoi gidrodinamiki, 84 (1988), 91–105 | Zbl
[5] Garipov R. M., “Neustanovivshiesya volny nad podvodnym khrebtom”, Dokl. AN SSSR, 161:3 (1965), 547–550 | Zbl
[6] Voinov V. V., Voinov O. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostyami”, Dokl. AN SSSR, 221:3 (1975), 559–562 | Zbl
[7] Petrov A. I., Smolyanin V. G., “Raschet nestatsionarnykh voln na poverkhnosti tyazheloi zhidkosti konechnoi glubiny”, Prikl. matem. i mekhan., 57:4 (1993), 137–143 | MR | Zbl
[8] Craig W., Sulem C., “Numerical simulation of gravity waves”, J. Comput. Phys., 108 (1993), 73–83 | DOI | MR | Zbl
[9] Tsai W., Yue D., “Computations of nonlinear free-surface flows”, Annu. Rev. Fluid Mech., 28 (1996), 249–278 | MR
[10] Zakharov V. E., Dyachenko A. I., Vasilyev O. A., “New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface”, European Journal of Mechanics B Fluids, 21 (2002), 283–291 | DOI | MR | Zbl
[11] Dyachenko A. I., Zakharov V. E., Kuznetsov E. A., “Nelineinaya dinamika svobodnoi poverkhnosti idealnoi zhidkosti”, Fizika plazmy, 22:10 (1999), 916–928
[12] Zakharov V. E., “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, ZhPMTF, 1968, no. 2, 86–94
[13] Sobolev S. L., Nekotorye primenneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[14] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR
[15] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1983 | MR
[16] Korneichuk N. P., Splainy v teorii priblizhenii, Nauka, M., 1984 | MR
[17] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl
[18] Kurkin A. A., Pelenovskii E. N., Volny-ubiitsy: fakty, teoriya i modelirovanie, Izd-vo NNGU, Nizhnii Novgorod, 2004