The optimum in order method of solving conditionally-correct problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 353-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions, which ensure sets of the Banach spaces to be classes of correctness are obtained. The concept of solution method of conditional-correct problem is given. The quantitative characteristic of its accuracy on an appropriate class of correctness is determined. The obtained results are used for solving one inverse problem of solid-state physics.
@article{SJVM_2006_9_4_a3,
     author = {V. P. Tanana and N. M. Yaparova},
     title = {The optimum in order method of solving conditionally-correct problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {353--368},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a3/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - N. M. Yaparova
TI  - The optimum in order method of solving conditionally-correct problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 353
EP  - 368
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a3/
LA  - ru
ID  - SJVM_2006_9_4_a3
ER  - 
%0 Journal Article
%A V. P. Tanana
%A N. M. Yaparova
%T The optimum in order method of solving conditionally-correct problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 353-368
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a3/
%G ru
%F SJVM_2006_9_4_a3
V. P. Tanana; N. M. Yaparova. The optimum in order method of solving conditionally-correct problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 353-368. http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a3/

[1] Ivanov V. K., “O ravnomernoi regulyarizatsii neustoichivykh zadach”, Sib. matem. zhurn., 7:3 (1966), 546–558 | Zbl

[2] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:5 (1943), 195–198 | MR

[3] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1962 | MR

[4] Ivanov V. K., “O lineinykh nekorrektnykh zadachakh”, Dokl. AN SSSR, 145:2 (1962), 270–272 | MR | Zbl

[5] Tanana V. P., Danilin A. R., “Ob optimalnosti regulyarizuyuschikh algoritmov pri reshenii nekorrektnykh zadach”, Diff. uravn., 12:7 (1976), 1323–1326 | MR | Zbl

[6] Tanana V. P., “O novom podkhode k otsenke pogreshnosti metodov resheniya nekorrektno postavlennykh zadach”, Sib. zhurn. ind. matem., 5:4 (2002), 150–163 | MR | Zbl

[7] Lifshits I. M., “Ob opredelenii energeticheskogo spektra boze-sistemy po ee teploemkosti”, ZhETF, 26:5 (1954), 551–556 | Zbl

[8] Lavrentev M. M., Uslovno-korrektnye zadachi dlya differentsialnykh uravnenii, NGU, Novosibirsk, 1973

[9] Ivanov V. K., Korolyuk T. I., “Ob otsenke pogreshnosti pri reshenii nekorrektnykh zadach”, Zhurn. vychisl. matem. i mat. fiz., 9:1 (1969), 30–41 | Zbl

[10] Ivanov V. K., “Ob odnom tipe nekorrektnykh lineinykh uravnenii v vektornykh topologicheskikh prostranstvakh”, Sib. matem. zhurn., 6:4 (1965), 832–839 | MR | Zbl

[11] Distel D., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR

[12] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[13] Tanana V. P., Sevastyanov Ya. M., “Ob optimalnykh metodakh resheniya lineinykh uravnenii pervogo roda s priblizhenno zadannym operatorom”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 6:2 (2003), 205–208 | MR | Zbl

[14] Menikhes L. D., Tanana V. P., “Konechnomernaya approksimatsiya v metode M. M. Lavrenteva”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. – Novosibirsk, 1:1 (1998), 416–423 | MR

[15] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, In-t matematiki SO RAN, Novosibirsk, 1999 | MR | Zbl

[16] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[17] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | MR