On a~smooth volume approach, integral conservation law, and upwind scheme with monotonic reconstruction
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 345-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a smooth volume approach – an alternative to smooth particle formalism. The proposed approach is based on approximation of integral conservation law and can be viewed as a generalization for the finite volume method. To provide insight into properties of smooth volume schemes, a hypothesis is presented. On its basis, an extension technique for the development of smooth volume schemes is suggested. Using this technique, the finite volume upwind and the Godunov schemes with monotonic reconstruction are generalized to smooth volume schemes. The hypothesis, the technique and the resulting schemes are tested by applying them to gasdynamics shock tube problems. Precise and monotonic calculation results verify validity of our theory and properties of the schemes developed.
@article{SJVM_2006_9_4_a2,
     author = {T. Z. Ismagilov},
     title = {On a~smooth volume approach, integral conservation law, and upwind scheme with monotonic reconstruction},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {345--352},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a2/}
}
TY  - JOUR
AU  - T. Z. Ismagilov
TI  - On a~smooth volume approach, integral conservation law, and upwind scheme with monotonic reconstruction
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 345
EP  - 352
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a2/
LA  - en
ID  - SJVM_2006_9_4_a2
ER  - 
%0 Journal Article
%A T. Z. Ismagilov
%T On a~smooth volume approach, integral conservation law, and upwind scheme with monotonic reconstruction
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 345-352
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a2/
%G en
%F SJVM_2006_9_4_a2
T. Z. Ismagilov. On a~smooth volume approach, integral conservation law, and upwind scheme with monotonic reconstruction. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 4, pp. 345-352. http://geodesic.mathdoc.fr/item/SJVM_2006_9_4_a2/

[1] Lucy L. B., “A numerical approach to the testing of the fission hypothesis”, The Astr. J., 82 (1977), 1013–1024 | DOI

[2] Monaghan J. J., “Smoothed particle hydrodynamics”, Annu. Rev. Astron. Astrophys., 30 (1992), 543–574 | DOI

[3] Grigoryev Yu. N., Vshivkov V. A., Fedoruk M. P., Numerical Particle-In-Cell Methods: Theory and Applications, VSP, Utrecht, Boston, 2002

[4] Parshikov A. N., Medin S. A., “Smoothed particle hydrodynamics using interparticle contact algorithms”, J. Comput. Phys., 180 (2002), 358–382 | DOI | Zbl

[5] Parshikov A. N., “Application of a solution to the Riemann problem in the SPH method”, Comput. Math. Math. Phys., 39 (1999), 1173–1182 | MR | Zbl

[6] Inutsuka S., “Reformulation of smoothed particle hydrodynamics with Riemann solver”, J. Comput. Phys., 179 (2002), 238–267 | DOI | Zbl

[7] Godunov S. K., “A difference scheme for numerical computation of discontinuous solution of hydrodynamic equations”, Math. Sb., 47:3 (1959), 271–306 (In Russian) | MR | Zbl

[8] Barth T. J., Jespersen D. C., The design and application of upwind schemes on unstructured meshes, Technical Report AIAA-89-0366, 1989

[9] Godunov S. K., Romenskii E. I., Elements of Continuum Mechanics and Conservation Laws, Nauchnaya Kniga, Novosibirsk, 1998

[10] Ismagilov T. Z., Smooth volume method II.–Lawrence Livermore National Laboratory, Technical Report UCRL-JRNL-206392, 2004

[11] Monaghan J. J., “SPH and Riemann solvers”, J. Comput. Phys., 136 (1997), 298–307 | DOI | MR | Zbl

[12] Molteni D., Bilello C., “Riemann solver in SPH”, Mem. S.A.It., 1, Suppl. (2003), 36–44