Methods of face feature extraction of the human identification problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 3, pp. 207-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper offers three different methods that are used to extract information features from a face image. We suggest effective modifications of the feature extraction methods based on the principal component analysis, wavelets, hidden Markov models. The human face recognition experiments were carried out using the database with normalized faces. These experiments have shown advantages and disadvantages of the methods proposed.
@article{SJVM_2006_9_3_a0,
     author = {P. V. Bazanov and O. V. Djosan},
     title = {Methods of face feature extraction of the human identification problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {207--214},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a0/}
}
TY  - JOUR
AU  - P. V. Bazanov
AU  - O. V. Djosan
TI  - Methods of face feature extraction of the human identification problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 207
EP  - 214
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a0/
LA  - ru
ID  - SJVM_2006_9_3_a0
ER  - 
%0 Journal Article
%A P. V. Bazanov
%A O. V. Djosan
%T Methods of face feature extraction of the human identification problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 207-214
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a0/
%G ru
%F SJVM_2006_9_3_a0
P. V. Bazanov; O. V. Djosan. Methods of face feature extraction of the human identification problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 3, pp. 207-214. http://geodesic.mathdoc.fr/item/SJVM_2006_9_3_a0/

[1] Vezhnevets V., “Face and facial feature tracking for natural human-computer interface”, Tr. konf. Grafikon-2002, 2002, 86–90

[2] Matveev I. A., Murynin A. B., “Printsipy postroeniya sistemy stereoskopicheskogo zreniya dlya upravleniya dvizheniem robota”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 184–192 | Zbl

[3] Bazanov P., Kim Tae-Kyun, Cheol Kee Seok, Lee Sang Uk., “Hybrid and Parallel Face Classifier based on artificial neural networks and principal component analysis”, Proceedings of IEEE International Conference on Image Processing, 1, 2002, 916–919, International Conference of Image Processing 2002 Rochester, New York, September 22–25, 2002

[4] McGuire P., D'Eleuterio G. M. T., “Eigenpaxels and a Neural-Network Approach to Image Classification”, IEEE Transactions on Neural Networks, 12:3 (2001) | DOI

[5] Haykin S., Neural Networks A Comprehensive Foundation, Macmillan College Publishing Company, USA, 1994, 363–370 | Zbl

[6] Duc B., Fischer S., Bigun J., “Face Authentication with Gabor Information on Deformable Graphs”, IEEE Transaction on Image Processing, 8:4 (1999), 504–516 | DOI

[7] Nefian A. V. and Hayes M. H., “Face recognition using an embedded HMM”, Proc. of the IEEE Conference on Audio and Video-based Biometric Person Authentication, 1999, 19–24