Inner estimation of solution sets to non-negative interval linear systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 189-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a new technique for constructing the maximum (with respect to an inclusion) inner estimates of the solution sets to the interval linear equations systems having non-negative matrices, based on the shape monotonicity of these solution sets.
@article{SJVM_2006_9_2_a6,
     author = {S. P. Shary},
     title = {Inner estimation of solution sets to non-negative interval linear systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {189--206},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a6/}
}
TY  - JOUR
AU  - S. P. Shary
TI  - Inner estimation of solution sets to non-negative interval linear systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 189
EP  - 206
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a6/
LA  - ru
ID  - SJVM_2006_9_2_a6
ER  - 
%0 Journal Article
%A S. P. Shary
%T Inner estimation of solution sets to non-negative interval linear systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 189-206
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a6/
%G ru
%F SJVM_2006_9_2_a6
S. P. Shary. Inner estimation of solution sets to non-negative interval linear systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 189-206. http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a6/

[1] Alefeld G., Khertsberger Yu., Vvedenie v intervalnye vychisleniya, Mir, M., 1987 | MR

[2] Voschinin A. P., Sotirov G. R., Optimizatsiya v usloviyakh neopredelennosti, Izd-vo MEI “Tekhnika”, Moskva–Sofiya, 1989

[3] Kalmykov S. A., Shokin Yu. I., Yuldashev Z. Kh., Metody intervalnogo analiza, Nauka, Novosibirsk, 1986 | MR | Zbl

[4] Sharyi S. P., O kharakterizatsii ob'edinennogo mnozhestva reshenii intervalnoi lineinoi algebraicheskoi sistemy, Dep. v VINITI No 726-V91, Krasnoyarsk, 1990

[5] Sharyi S. P., “Algebraicheskii podkhod k analizu lineinykh staticheskikh sistem s intervalnoi neopredelennostyu”, Izvestiya RAN. Teoriya i sistemy upravleniya, 1997, no. 3, 51–61

[6] Hansen E. R., “On linear algebraic equations with interval coeffcients”, Topics in Interval Analysis, ed. E. Hansen, Clarendon Press, Oxford, 1969, 35–46

[7] Kearfott R. B., Rigorous global search: continuous problems, Kluwer, Dordrecht, 1996 | MR

[8] Kearfott R. B., Nakao M., Neumaier A., Rump S., Shary S. P., van Hentenryck P., Standardized notation in interval analysis, http://www.ict.nsc.ru/interval/InteNotation.ps

[9] Kreinovich V., Lakeyev A., Rohn J., Kahl P., Computational complexity and feasibility of data processing and interval computations, Kluwer, Dordrecht, 1997 | MR | Zbl

[10] Kurzhanskii A. B., “Zadacha identifikatsii – teoriya garantirovannykh otsenok”, Avtomatika i telemekhanika, 1991, no. 4, 3–26 | MR

[11] Laveuve S. E., “Definition einer Kahan-Arithmetic und ihre Implementierung”, Interval Mathematics, Lect. Notes in Computer Science, 29, ed. K. Nickel, Springer, Berlin, 1975, 236–245

[12] Neumaier A., Interval methods for systems of equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[13] Oettli W., “On the solution set of a linear system with inaccurate coefficients”, SIAM Journal on Numerical Analysis, 2:1 (1965), 115–118 | MR | Zbl

[14] Shary S. P., “Solving interval linear systems with nonnegative matrices”, Scientific Computations and Mathematical Modelling, Proc. of the International Conference MMSC-93, ed. S. M. Markov, DATECS Publishing, Sofia, 1993, 179–182

[15] Shary S. P., “A new technique in systems analysis under interval uncertainty and ambiguity”, Reliable Computing, 8:5 (2002), 321–418 ; http://www.ict.nsc.ru/shary/Papers/ANewTech.ps | DOI | MR | Zbl