Periodic interpolation with a minimum norm of the $m$-th derivative
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 165-172

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the interpolation problem for periodic data with a bounded lp-norm is investigated for an interpolating set of smooth periodic functions. In the cases when $p=2$ and $p=\infty$, the exact values of the $L_p$-norms of the $m$-th derivative of the best interpolants are found for a certain class of sequences.
@article{SJVM_2006_9_2_a4,
     author = {S. I. Novikov},
     title = {Periodic interpolation with a minimum norm of the $m$-th derivative},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {165--172},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a4/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Periodic interpolation with a minimum norm of the $m$-th derivative
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 165
EP  - 172
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a4/
LA  - ru
ID  - SJVM_2006_9_2_a4
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Periodic interpolation with a minimum norm of the $m$-th derivative
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 165-172
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a4/
%G ru
%F SJVM_2006_9_2_a4
S. I. Novikov. Periodic interpolation with a minimum norm of the $m$-th derivative. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a4/