Conditional optimization of discrete-stochastic numerical procedures with cubic splines applied
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 147-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the discrete-stochastic numerical procedures of the global function approximation are considered. The procedures are built to approximate the solution to an integral equation of the second kind using the Streng–Fix approximation with cubic B-splines as basis functions. In the case of using cubic splines, a discrete component of the approximation error has a higher order with respect to the grid step as compared to the well-studied case of the multi-linear approximation. Moreover, the property of “error concentration in grid nodes” is proved to hold for approximation with the cubic splines as well. This is because the coefficients of the approximation are, in fact, linear combinations of the function values in grid nodes. The above properties provide the upper bounds for the total approximation error. Finally, for the investigated discrete-stochastic procedures, the conditionally-optimal parameters are calculated that minimize computational costs for the procedures with the fixed error upper bounds.
@article{SJVM_2006_9_2_a3,
     author = {V. V. Miloserdov},
     title = {Conditional optimization of discrete-stochastic numerical procedures with cubic splines applied},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a3/}
}
TY  - JOUR
AU  - V. V. Miloserdov
TI  - Conditional optimization of discrete-stochastic numerical procedures with cubic splines applied
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 147
EP  - 163
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a3/
LA  - ru
ID  - SJVM_2006_9_2_a3
ER  - 
%0 Journal Article
%A V. V. Miloserdov
%T Conditional optimization of discrete-stochastic numerical procedures with cubic splines applied
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 147-163
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a3/
%G ru
%F SJVM_2006_9_2_a3
V. V. Miloserdov. Conditional optimization of discrete-stochastic numerical procedures with cubic splines applied. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 147-163. http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a3/

[1] Voitishek A. V., Diskretno-stokhasticheskie chislennye metody, Dis. dokt. fiz.-mat. nauk: 01.01.07, Novosibirsk, 2001

[2] Voytishek A. V., “On the errors of discretely stochastic procedures in estimating globally the solution of an integral equation of the second kind”, Rus. J. Numer. Anal. Math. Model., 11:1 (1996), 71–92 | DOI | MR | Zbl

[3] Shkarupa E. V., Voytishek A. V., “Optimization of discretely stochastic procedures for globally estimating the solution of an integral equation of the second kind”, Rus. J. Numer. Anal. Math. Model., 12:6 (1997), 525–546 | DOI | MR | Zbl

[4] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[5] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[6] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[7] Elepov B. S. i dr., Reshenie kraevykh zadach metodom metodom Monte-Karlo, Nauka, Novosibirsk, 1980 | Zbl

[8] Makarov R., Shkarupa E., “Functional algorithms of Monte Carlo method for solving nonlinear boundary problems”, Proc. of the International conference on computational mathematics, Novosibirsk, 2004, 341–346

[9] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[10] Zavyalov Yu. S. i dr., Metody splain-funktsii, Nauka, M., 1980 | MR

[11] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR