Recalculation, numbering and generation of serial sequences with detached natural series
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 109-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sets of integer-valued serial sequences of the length $m$, whose structure is determined by limitations on the quantity, total length and permitted lengths of natural series, as well as on lengths of separating 0-series are considered. The cases when lengths of boundary series may not satisfy the given constraints are considered as well. Exact solutions to problems of recalculation, coding and generation are obtained for such sets.
@article{SJVM_2006_9_2_a0,
     author = {V. A. Amelkin},
     title = {Recalculation, numbering and generation of serial sequences with detached natural series},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a0/}
}
TY  - JOUR
AU  - V. A. Amelkin
TI  - Recalculation, numbering and generation of serial sequences with detached natural series
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2006
SP  - 109
EP  - 121
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a0/
LA  - ru
ID  - SJVM_2006_9_2_a0
ER  - 
%0 Journal Article
%A V. A. Amelkin
%T Recalculation, numbering and generation of serial sequences with detached natural series
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2006
%P 109-121
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a0/
%G ru
%F SJVM_2006_9_2_a0
V. A. Amelkin. Recalculation, numbering and generation of serial sequences with detached natural series. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 2, pp. 109-121. http://geodesic.mathdoc.fr/item/SJVM_2006_9_2_a0/

[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1982 | MR | Zbl

[2] Babkin V. F., Kryukov A. B., “Numeratsiya dvoichnykh posledovatelnostei s ogranichennymi dlinami serii”, Kodirovanie v slozhnykh sistemakh, Nauka, M., 1974, 180–184 | MR

[3] Vasilev P. I., “O blokakh s ogranichennymi dlinami serii s nakoplennoi summoi”, Devyataya vsesoyuz. konf. po teorii kodirovaniya i peredache informatsii, Tez. dokl. Ch. 1, Odessa, 1988, 281–284

[4] Amelkin V. A., “Algoritmy tochnogo resheniya zadach perechisleniya, kodirovaniya i generirovaniya seriinykh posledovatelnostei”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4,:1 (2001), 1–12 | MR

[5] Amelkin V. A., Chistyakov M. G., Dvoichnye posledovatelnosti s defektnymi granichnymi seriyami, Preprint / RAN. Sib. otd-nie. IVMiMG; 1152, Novosibirsk, 2002

[6] Amelkin V. A., Algoritmy numeratsii posledovatelnostei, sostavlennykh iz serii, AN SSSR, Sib. otd-nie, VTs, Novosibirsk, 1990 | MR

[7] Cover T. M., “Enumerative sourse encoding”, IEEE Trans. Inform. Theory, 19:1 (1973), 73–77 | DOI | MR | Zbl