On calculation of scalar products of $B$-splines
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 1, pp. 55-61
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to algorithms of stable calculation of scalar products of $B$-splines. A new modification of recursive calculations of integrals in the Gram matrix is proposed. The modified algorithm is nearly two times faster than the Gauss quadratures and the full recursion algorithm.
@article{SJVM_2006_9_1_a5,
author = {A. I. Rozhenko},
title = {On calculation of scalar products of $B$-splines},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {55--61},
year = {2006},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a5/}
}
A. I. Rozhenko. On calculation of scalar products of $B$-splines. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 9 (2006) no. 1, pp. 55-61. http://geodesic.mathdoc.fr/item/SJVM_2006_9_1_a5/
[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[2] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka. Sib. otd-nie, Novosibirsk, 1983 | MR
[3] Rozhenko A. I., Abstraktnaya teoriya splainov: Ucheb. posobie, Izd. tsentr NGU, Novosibirsk, 1999
[4] de Boor C., Lyche T., Schumaker L. L., “On calculating with B-splines. II. Integration”, Numerische Methoden der Approximations Theorie, Vol. 3, Int. Ser. Num. Math., 30, Birkhäuser, Basel, 1976, 123–146 | MR
[5] Vermeulen A. H., Bartels R. H., Heppler G. R., “Integrating products of B-splines”, SIAM J. Sci. Stat. Comput., 13:4 (1992), 1025–1038 | DOI | MR | Zbl