Average discrepancy for periodic integrands
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 353-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the numerical integration of periodic integrands over the $s$-dimensional unit cube, various performance criteria such as $P_{\alpha}$ and $R$ have previously been used. In this paper, we use a criterion called $L_2$ discrepancy. An analogue of this quantity has previously been used to study the error in the case of non-periodic integrands. For this quantity we obtain expressions for the average in the case of number-theoretic and $2^s$ copy rules. The values of these averages are then compared for roughly the same number of points
@article{SJVM_2005_8_4_a7,
     author = {M. V. Reddy},
     title = {Average discrepancy for periodic integrands},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {353--362},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a7/}
}
TY  - JOUR
AU  - M. V. Reddy
TI  - Average discrepancy for periodic integrands
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 353
EP  - 362
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a7/
LA  - en
ID  - SJVM_2005_8_4_a7
ER  - 
%0 Journal Article
%A M. V. Reddy
%T Average discrepancy for periodic integrands
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 353-362
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a7/
%G en
%F SJVM_2005_8_4_a7
M. V. Reddy. Average discrepancy for periodic integrands. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 353-362. http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a7/

[1] Disney S. A. R., Sloan I. H., “Lattice integration rules of maximal rank formed by copying rank 1 rules”, SIAM J. Numer. Anal., 29 (1992), 566–577 | DOI | MR | Zbl

[2] Hickernell F. J., “Quadrature error bounds with applications to lattice rules”, SIAM J. Numer. Anal., 33 (1996), 1995–2016 | DOI | MR | Zbl

[3] Hickernell F. J., “A generalized discrepancy and quadrature error bound”, Math. Comp., 67 (1998), 299–322 | DOI | MR | Zbl

[4] Joe S., “Bounds on the lattice rule criterion $R$”, Math. Comp., 61 (1993), 821–831 | DOI | MR | Zbl

[5] Joe S., “An average $L_2$ discrepancy for number-theoretic rules”, SIAM J. Numer. Anal., 36 (1999), 1949–1961 | DOI | MR | Zbl

[6] Rademacher H., Whiteman A., “Theorems on Dedekind sums”, Amer. J. Math., 63 (1941), 377–407 | DOI | MR

[7] Reddy M. V., “Number theoretic rules versus 2s copy rules for non-periodic integrands”, Far East J. Appl. Math., 18:1 (2005), 13–29 | MR | Zbl

[8] Reddy M. V., Joe S., “An average discrepancy for optimal vertex-modified number-theoretic rules”, Adv. Comput. Math., 12 (2000), 59–69 | DOI | MR | Zbl

[9] Sloan I. H., Joe S., Lattice Methods for Multiple Integration, Clarendon Press, Oxford, 1994 | MR | Zbl