On extrapolation with respect to a~parameter in the perturbed mixed variational problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 307-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the extrapolation with respect to a regularization parameter in the mixed variational problem is investigated. The estimates obtained are applied to a few examples of boundary value problems. The results of numerical experiments are given.
@article{SJVM_2005_8_4_a4,
     author = {A. A. Kalinkin and Yu. M. Laevsky},
     title = {On extrapolation with respect to a~parameter in the perturbed mixed variational problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {307--323},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a4/}
}
TY  - JOUR
AU  - A. A. Kalinkin
AU  - Yu. M. Laevsky
TI  - On extrapolation with respect to a~parameter in the perturbed mixed variational problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 307
EP  - 323
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a4/
LA  - ru
ID  - SJVM_2005_8_4_a4
ER  - 
%0 Journal Article
%A A. A. Kalinkin
%A Yu. M. Laevsky
%T On extrapolation with respect to a~parameter in the perturbed mixed variational problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 307-323
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a4/
%G ru
%F SJVM_2005_8_4_a4
A. A. Kalinkin; Yu. M. Laevsky. On extrapolation with respect to a~parameter in the perturbed mixed variational problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 307-323. http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a4/

[1] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, New York, 1991 | MR | Zbl

[2] Bercovier M., “Perturbation of mixed variational problems. Application to mixed finite element methods”, RAIRO, Num. Anal., 12:3 (1978), 211–236 | MR | Zbl

[3] Axelsson O., “Preconditioning of indefinite problems by regularization”, SIAM J. Num. Anal., 16:1 (1979), 58–69 | DOI | MR | Zbl

[4] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[5] Kuznetsov Y. A., Wheeler M. F., “Optimal order substructuring preconditioners for mixed finite element methods on nonmatching grids”, East-West J. Num. Math., 3 (1995), 127–143 | MR | Zbl

[6] Rusten T., Winter R., “A preconditioned iterative method for saddle point problems”, SIAM J. Matrix Anal., 13 (1992), 887–904 | DOI | MR | Zbl

[7] Kalinkin A. A., Laevsky Yu. M., “On extrapolation in perturbed mixed variational problems”, Proc. of Int. Conf. PMOCCO-2002, eds. O. Axelsson, B. Polman, S. Gololobov, Nijmegen (The Netherlands), 2002, 34–41

[8] Babuška I., “The finite element method with Lagrangian multipliers”, Num. Math., 20 (1973), 179–192 | DOI | MR | Zbl

[9] Brezzi F., “On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers”, RAIRO. Num. Anal., 8:2 (1974), 129–151 | MR | Zbl

[10] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[11] Babuška I., Aziz A. K., “Survey lectures on the mathematical foundations of the finite element method”, The Mathematical Foundations of the finite element method with applications to partial differential equations, ed. A. K. Aziz, Academic Press, New York–London, 1972, 1–359 | MR

[12] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 9, Zapiski nauchn. sem. LOMI, 59, Nauka, L., 1976, 81–116 | Zbl

[13] Herrmann L. R., “Elasticity equations for incompressible or nearly incompressible materials by a variational theorem”, AIAA J., 3 (1965), 1896–1900 | DOI | MR

[14] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[15] Lions Zh.-L., Mazhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[16] Axelsson O., “On iterative solvers in structural mechanics”, Proc. on Conf. PRISM-97, eds. O. Axelsson, M. Neytcheva, B. Polman, Nijmegen (The Netherlands), 1997, 55–62