Dynamic problem of linear viscoelasticity in velocity-stress statement
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 289-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

A conjugate-operator viscoelastic model in the velocity-stress statement is studied. To implement it numerically, a class of implicit difference schemes based on the spatial variables splitting is constructed.
@article{SJVM_2005_8_4_a2,
     author = {M. M. Bukenov},
     title = {Dynamic problem of linear viscoelasticity in velocity-stress statement},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {289--295},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a2/}
}
TY  - JOUR
AU  - M. M. Bukenov
TI  - Dynamic problem of linear viscoelasticity in velocity-stress statement
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 289
EP  - 295
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a2/
LA  - ru
ID  - SJVM_2005_8_4_a2
ER  - 
%0 Journal Article
%A M. M. Bukenov
%T Dynamic problem of linear viscoelasticity in velocity-stress statement
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 289-295
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a2/
%G ru
%F SJVM_2005_8_4_a2
M. M. Bukenov. Dynamic problem of linear viscoelasticity in velocity-stress statement. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 4, pp. 289-295. http://geodesic.mathdoc.fr/item/SJVM_2005_8_4_a2/

[1] Konovalov A. N., “Dinamicheskaya zadacha teorii uprugosti v postanovke “skorosti-napryazheniya””, Differents. uravneniya, 35:2 (1999), 1–11 | MR

[2] Patsyuk V. I., Statsionirovanie dinamicheskikh protsessov v vyazkouprugikh sredakh, Dis. $\dots$ kand. fiz.-mat. nauk, Novosibirsk, 1982

[3] Bukenov M. M., Kuznetsov Yu. A., Ob odnoi spektralnoi zadache teorii uprugosti, Preprint / AN SSSR. Sib. otd-nie. VTs; 81, Novosibirsk, 1981 | MR

[4] Popov Yu. P., Samarskii A. A., “Polnostyu konservativnye raznostnye skhemy”, Zhurn. vychisl. matem. i mat. fiziki, 9:4 (1969), 953–958 | MR | Zbl

[5] Samarskii A. A., Popov Yu. P., Raznostnye skhemy gazovoi dinamiki, Nauka, M., 1975 | MR

[6] Bagrinovskii K. A., Godunov S. K., “Raznostnye skhemy dlya mnogomernykh zadach”, Dokl. AN SSSR, 115:3 (1957), 431–433 | MR

[7] Anuchina N. N., Yanenko N. N., “Neyavnye skhemy rasschepleniya dlya giperbolicheskikh uravnenii i sistem”, Dokl. AN SSSR, 128:6 (1959), 1103–1106

[8] Yanenko N. N., “Ob ekonomichnykh neyavnykh skhemakh (metod drobnykh shagov)”, Dokl. AN SSSR, 134:5 (1960), 1034–1036 | Zbl

[9] Kristensen R., Vvedenie v teoriyu vyazkouprugosti, Mir, M., 1974

[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR