On error estimation for the quasi-inversion method for solving a~semi-linear ill-posed problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 259-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the approximate solutions error estimates are obtained for an ill-posed semi-linear Cauchy problem. The continuity module of the inverse operator is used as a standard estimator for obtaining the error estimates. The value of the continuity module is calculated for two classes of uniform regularization of the original problem. The quasi-inversion method is used to construct stable approximate solutions.
@article{SJVM_2005_8_3_a6,
     author = {I. V. Tabarintseva},
     title = {On error estimation for the quasi-inversion method for solving a~semi-linear ill-posed problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a6/}
}
TY  - JOUR
AU  - I. V. Tabarintseva
TI  - On error estimation for the quasi-inversion method for solving a~semi-linear ill-posed problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 259
EP  - 271
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a6/
LA  - ru
ID  - SJVM_2005_8_3_a6
ER  - 
%0 Journal Article
%A I. V. Tabarintseva
%T On error estimation for the quasi-inversion method for solving a~semi-linear ill-posed problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 259-271
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a6/
%G ru
%F SJVM_2005_8_3_a6
I. V. Tabarintseva. On error estimation for the quasi-inversion method for solving a~semi-linear ill-posed problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 259-271. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a6/

[1] Tanana V. P., Tabarintseva E. V., “O reshenii nekorrektnoi zadachi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 5:2 (2002), 189–198 | MR | Zbl

[2] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995 | MR

[3] Lattes R., Lions Zh. L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970 | MR | Zbl

[4] Tanana V. P., Tabarintseva E. V., “About the optimality of the quasi inversion type method in the solution of mathematical physics inverse problems”, J. Inverse and Ill-Posed Problems, 1:3 (1993), 180–196 | MR

[5] Krein S. G., Differentsialno-operatornye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[6] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningradskogo un-ta, L., 1980 | MR

[7] Ivanov V. K., Korolyuk T. I., “Ob otsenke pogreshnosti pri reshenii lineinykh nekorrektnykh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 9:1 (1969), 30–41 | Zbl

[8] Strakhov V. N., “O reshenii lineinykh nekorrektnykh zadach v gilbertovom prostranstve”, Differentsialnye uravneniya, 6:8 (1970), 1490–1495 | Zbl

[9] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1982 | MR | Zbl