Optimal grids for solution to the wave equation with variable coefficients
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 219-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper represents investigation of the method of constructing optimal grids. Extension of this method to the wave equation with variable coefficients and estimation of numerical solution obtained on optimal grids are also considered. The experiments presented illustrate a decrease of the time required for calculations.
@article{SJVM_2005_8_3_a3,
     author = {V. V. Lisitsa},
     title = {Optimal grids for solution to the wave equation with variable coefficients},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {219--229},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a3/}
}
TY  - JOUR
AU  - V. V. Lisitsa
TI  - Optimal grids for solution to the wave equation with variable coefficients
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 219
EP  - 229
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a3/
LA  - ru
ID  - SJVM_2005_8_3_a3
ER  - 
%0 Journal Article
%A V. V. Lisitsa
%T Optimal grids for solution to the wave equation with variable coefficients
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 219-229
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a3/
%G ru
%F SJVM_2005_8_3_a3
V. V. Lisitsa. Optimal grids for solution to the wave equation with variable coefficients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 219-229. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a3/

[1] Beiker Dzh., Greivis-Morris P., Approksimatsii Pade, Mir, M., 1986

[2] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997

[3] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1988 | MR

[4] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[5] Parlett B., Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl

[6] Pashkvoskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983 | MR

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[8] Asvadurov S., Druskin V., Knizhnerman L., “Application of the difference Gaussian rules to solution of hyperbolic problems”, J. Comp. Phys., 158 (2000), 116–135 | DOI | MR | Zbl

[9] Asvadurov S., Druskin V., Knizhnerman L., “Application of the difference Gaussian rules to solution of hyperbolic problems. II: Global Expansion”, J. Comp. Phys., 175 (2002), 24–49 | DOI | MR | Zbl

[10] Druskin V., Knizhnerman L., “Gaussian spectral rules for the tree-point second differrences. I: A two point positive definite problem in a semi-infinite domain”, SIAM J. Numerical Analysis, 37:2 (2000), 403–422 | DOI | MR | Zbl

[11] Booley D., Golub G. H., “A survey of matrix inverse eigenvalue problems”, Inverse Problems, 3 (1987), 595–622 | DOI | MR