Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2005_8_3_a3, author = {V. V. Lisitsa}, title = {Optimal grids for solution to the wave equation with variable coefficients}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {219--229}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a3/} }
TY - JOUR AU - V. V. Lisitsa TI - Optimal grids for solution to the wave equation with variable coefficients JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 219 EP - 229 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a3/ LA - ru ID - SJVM_2005_8_3_a3 ER -
V. V. Lisitsa. Optimal grids for solution to the wave equation with variable coefficients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 219-229. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a3/
[1] Beiker Dzh., Greivis-Morris P., Approksimatsii Pade, Mir, M., 1986
[2] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997
[3] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1988 | MR
[4] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[5] Parlett B., Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl
[6] Pashkvoskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983 | MR
[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[8] Asvadurov S., Druskin V., Knizhnerman L., “Application of the difference Gaussian rules to solution of hyperbolic problems”, J. Comp. Phys., 158 (2000), 116–135 | DOI | MR | Zbl
[9] Asvadurov S., Druskin V., Knizhnerman L., “Application of the difference Gaussian rules to solution of hyperbolic problems. II: Global Expansion”, J. Comp. Phys., 175 (2002), 24–49 | DOI | MR | Zbl
[10] Druskin V., Knizhnerman L., “Gaussian spectral rules for the tree-point second differrences. I: A two point positive definite problem in a semi-infinite domain”, SIAM J. Numerical Analysis, 37:2 (2000), 403–422 | DOI | MR | Zbl
[11] Booley D., Golub G. H., “A survey of matrix inverse eigenvalue problems”, Inverse Problems, 3 (1987), 595–622 | DOI | MR