The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 207-218
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we analyze the $V$-cycle multigrid algorithm for a positive definite Helmholtz equation on a hexagonal grid. Specifically, we apply the $V$-cycle multigrid algorithm to the numerical scheme based on the mean value solutions for the Helmholtz equation on hexagonal grids introduced in [1], and show its convergence. The theory for the $V$-cycle multigrid convergence is carried out in the framework in [6] by estimating the energy norm of the prolongation operator and proving the approximation and regularity conditions. In numerical experiments, we report the eigenvalues, condition number and contraction number.
@article{SJVM_2005_8_3_a2,
author = {Kwak Do Y. and Lee Jun S.},
title = {The $V$-cycle multigrid convergence of some finite difference scheme for the {Helmholtz} equation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {207--218},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/}
}
TY - JOUR AU - Kwak Do Y. AU - Lee Jun S. TI - The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 207 EP - 218 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/ LA - en ID - SJVM_2005_8_3_a2 ER -
%0 Journal Article %A Kwak Do Y. %A Lee Jun S. %T The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2005 %P 207-218 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/ %G en %F SJVM_2005_8_3_a2
Kwak Do Y.; Lee Jun S. The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 207-218. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/