The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 207-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we analyze the $V$-cycle multigrid algorithm for a positive definite Helmholtz equation on a hexagonal grid. Specifically, we apply the $V$-cycle multigrid algorithm to the numerical scheme based on the mean value solutions for the Helmholtz equation on hexagonal grids introduced in [1], and show its convergence. The theory for the $V$-cycle multigrid convergence is carried out in the framework in [6] by estimating the energy norm of the prolongation operator and proving the approximation and regularity conditions. In numerical experiments, we report the eigenvalues, condition number and contraction number.
@article{SJVM_2005_8_3_a2,
     author = {Kwak Do Y. and Lee Jun S.},
     title = {The $V$-cycle multigrid convergence of some finite difference scheme for the {Helmholtz} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {207--218},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/}
}
TY  - JOUR
AU  - Kwak Do Y.
AU  - Lee Jun S.
TI  - The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 207
EP  - 218
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/
LA  - en
ID  - SJVM_2005_8_3_a2
ER  - 
%0 Journal Article
%A Kwak Do Y.
%A Lee Jun S.
%T The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 207-218
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/
%G en
%F SJVM_2005_8_3_a2
Kwak Do Y.; Lee Jun S. The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 207-218. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/

[1] Andrade M. G., Do Val J. B. R., “A numerical scheme based on mean value solutions for the Helmholtz equation on triangular grids”, Math. Comp., 66:218 (1997), 477–493 | DOI | MR | Zbl

[2] Bank R. E., Dupont T., “An optimal order process for solving finite element equations”, Math. Comp., 36:153 (1981), 35–51 | DOI | MR | Zbl

[3] Bramble J. H., Ewing R., Pasciak J. E., Shen J., “The analysis of multigrid algorithms for cell centered finite difference methods”, Adv. Comp. Math., 5:1 (1996), 15–29 | DOI | MR | Zbl

[4] Bramble J. H. and Pasciak J. E., “New convergence estimates for the multigrid algorithms”, Math. Comp., 49:180 (1987), 311–329 | DOI | MR | Zbl

[5] Bramble J. H., Pasciak J. E., “New estimates for multigrid algorithm including the $V$-cycle”, Math. Comp., 60:202 (1993), 447–471 | DOI | MR | Zbl

[6] Bramble J. H., Pasciak J. E., Xu J., “The analysis of multigrid algorithms with nonnested spaces or nonherited quadratic forms”, Math. Comp., 56:193 (1991), 1–34 | DOI | MR | Zbl

[7] Brenner S. C., Ridgway Scott L., The Mathematical Theory of Finite Element Methods, Springer, New York, 1994 | MR

[8] Chen Z., Kwak Do Y., “Convergence of multigrid method for nonconforming finite elements without regularity assumptions”, Comp. Appl. Math., 17 (1998), 283–302 | MR | Zbl

[9] Chen Z., Kwak Do Y., “$V$-cycle Galerkin-multigrid methods for nonconforming methods for nonsymmetric and indefinite problems”, Applied Num. Math., 28 (1998), 17–35 | DOI | MR | Zbl

[10] Kwak Do Y., “$V$-cycle multigrid for cell-centered finite differences”, SIAM J. Sci. Comp., 21 (1999), 552–564 | DOI | MR | Zbl

[11] Chen Z., Kwak Do Y., Yon Yoon J., “Multigrid Algorithms for nonconforming and mixed method for nonsymmetric indefinite problems”, SIAM J. Sci. Comp., 19 (1998), 502–515 | DOI | MR | Zbl

[12] Hackbush W., Multi-grid Methods and Applications, Springer, Berlin, 1985

[13] McCormick S. F., Multigrid Methods, SIAM Frontiers in Applied Mathematics, 3, Society for Industrial and Applied Mathematics, Philadelphia, 1987 | MR | Zbl