Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2005_8_3_a2, author = {Kwak Do Y. and Lee Jun S.}, title = {The $V$-cycle multigrid convergence of some finite difference scheme for the {Helmholtz} equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {207--218}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/} }
TY - JOUR AU - Kwak Do Y. AU - Lee Jun S. TI - The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 207 EP - 218 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/ LA - en ID - SJVM_2005_8_3_a2 ER -
%0 Journal Article %A Kwak Do Y. %A Lee Jun S. %T The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2005 %P 207-218 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/ %G en %F SJVM_2005_8_3_a2
Kwak Do Y.; Lee Jun S. The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 3, pp. 207-218. http://geodesic.mathdoc.fr/item/SJVM_2005_8_3_a2/
[1] Andrade M. G., Do Val J. B. R., “A numerical scheme based on mean value solutions for the Helmholtz equation on triangular grids”, Math. Comp., 66:218 (1997), 477–493 | DOI | MR | Zbl
[2] Bank R. E., Dupont T., “An optimal order process for solving finite element equations”, Math. Comp., 36:153 (1981), 35–51 | DOI | MR | Zbl
[3] Bramble J. H., Ewing R., Pasciak J. E., Shen J., “The analysis of multigrid algorithms for cell centered finite difference methods”, Adv. Comp. Math., 5:1 (1996), 15–29 | DOI | MR | Zbl
[4] Bramble J. H. and Pasciak J. E., “New convergence estimates for the multigrid algorithms”, Math. Comp., 49:180 (1987), 311–329 | DOI | MR | Zbl
[5] Bramble J. H., Pasciak J. E., “New estimates for multigrid algorithm including the $V$-cycle”, Math. Comp., 60:202 (1993), 447–471 | DOI | MR | Zbl
[6] Bramble J. H., Pasciak J. E., Xu J., “The analysis of multigrid algorithms with nonnested spaces or nonherited quadratic forms”, Math. Comp., 56:193 (1991), 1–34 | DOI | MR | Zbl
[7] Brenner S. C., Ridgway Scott L., The Mathematical Theory of Finite Element Methods, Springer, New York, 1994 | MR
[8] Chen Z., Kwak Do Y., “Convergence of multigrid method for nonconforming finite elements without regularity assumptions”, Comp. Appl. Math., 17 (1998), 283–302 | MR | Zbl
[9] Chen Z., Kwak Do Y., “$V$-cycle Galerkin-multigrid methods for nonconforming methods for nonsymmetric and indefinite problems”, Applied Num. Math., 28 (1998), 17–35 | DOI | MR | Zbl
[10] Kwak Do Y., “$V$-cycle multigrid for cell-centered finite differences”, SIAM J. Sci. Comp., 21 (1999), 552–564 | DOI | MR | Zbl
[11] Chen Z., Kwak Do Y., Yon Yoon J., “Multigrid Algorithms for nonconforming and mixed method for nonsymmetric indefinite problems”, SIAM J. Sci. Comp., 19 (1998), 502–515 | DOI | MR | Zbl
[12] Hackbush W., Multi-grid Methods and Applications, Springer, Berlin, 1985
[13] McCormick S. F., Multigrid Methods, SIAM Frontiers in Applied Mathematics, 3, Society for Industrial and Applied Mathematics, Philadelphia, 1987 | MR | Zbl