Investigation of mixed spectral and finite difference approximation on the basis of a~viscous flow problem in a~diffusor
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 149-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general approach to derivation of efficient numerical methods based on a mixed spectral and finite difference approximation for problems, whose solutions are smooth in some variables and non-smooth in other variables is considered. The approach considered is applied to the problem of a viscous liquid flow in a plane diffusor. Properties of the numerical method are investigated on the basis of computational experiments.
@article{SJVM_2005_8_2_a5,
     author = {A. V. Shapeev},
     title = {Investigation of mixed spectral and finite difference approximation on the basis of a~viscous flow problem in a~diffusor},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {149--162},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a5/}
}
TY  - JOUR
AU  - A. V. Shapeev
TI  - Investigation of mixed spectral and finite difference approximation on the basis of a~viscous flow problem in a~diffusor
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 149
EP  - 162
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a5/
LA  - ru
ID  - SJVM_2005_8_2_a5
ER  - 
%0 Journal Article
%A A. V. Shapeev
%T Investigation of mixed spectral and finite difference approximation on the basis of a~viscous flow problem in a~diffusor
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 149-162
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a5/
%G ru
%F SJVM_2005_8_2_a5
A. V. Shapeev. Investigation of mixed spectral and finite difference approximation on the basis of a~viscous flow problem in a~diffusor. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 149-162. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a5/

[1] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral Methods in Fluid Dynamics, Springer, New York, 1988 | MR

[2] Freund J. B., Lele S. K., Moin P., “Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate”, J. Fluid Mechanics, 421 (2000), 229–267 | DOI | MR | Zbl

[3] Kantur O. Yu., Tsibulin V. G., “Spektralno-raznostnyi metod rascheta konvektivnykh dvizhenii zhidkosti v poristoi srede i sokhranenie kosimmetrii”, Zhurn. vychisl. matem. i mat. fiziki, 42:6 (2002.), 913–923 | MR | Zbl

[4] Shapeev A. V., “Nestatsionarnoe avtomodelnoe techenie vyazkoi neszhimaemoi zhidkosti v ploskom diffuzore”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2004, no. 1, 41–46 | MR | Zbl

[5] Moffatt H. K., “Viscous and resistive eddies near a sharp corner”, J. Fluid Mechanics, 18 (1964), 1–18 | DOI | Zbl

[6] Akulenko L. D., Georgievskii D. V., Kumekshev S. A., “Techenie vyazkoi zhidkosti v konfuzore s bolshim uglom rastvora”, Doklady RAN, 386:3 (2002), 333–337

[7] Pukhnachev V. V., “Symmetries in the Navier–Stokes Equations”, Abstracts of VIII Int. Conf. “Navier–Stokes Equations and Related Topics”, St. Petersburg, 2002, 62–63