The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 143-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition of the best cubature formula invariant under the octahedral group of rotations with inversion for a sphere is given. The process of searching for the best cubature formulae of the given symmetry type is described. The table which contains the main characteristics of all the best today cubature formulae of the octahedral group of rotations with inversion up to the 53rd algebraic order of accuracy is given. The weights and the coordinates of the new cubature formulae of the 21st, 25th, 27th, 31st and 33rd orders of accuracy are given to 16 significant digits.
@article{SJVM_2005_8_2_a4,
     author = {A. S. Popov},
     title = {The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 143
EP  - 148
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/
LA  - ru
ID  - SJVM_2005_8_2_a4
ER  - 
%0 Journal Article
%A A. S. Popov
%T The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 143-148
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/
%G ru
%F SJVM_2005_8_2_a4
A. S. Popov. The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 143-148. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/

[1] Lebedev V. I., “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zhurn. vychisl. matem. i mat. fiz., 15:1 (1975), 48–54 | Zbl

[2] Lebedev V. I., “O kvadraturakh na sfere”, Zhurn. vychisl. matem. i mat. fiz., 16:2 (1976), 293–306 | MR | Zbl

[3] Lebedev V. I., “Kvadraturnye formuly dlya sfery 25–29-go poryadka tochnosti”, Sib. matem. zhurn., 18:1 (1977), 132–142 | MR | Zbl

[4] Lebedev V. I., “Kvadraturnaya formula 35-go poryadka dlya sfery”, Teoriya kubaturnykh formul i vychisl. matematika, Tr. konferentsii po diff. uravneniyam i vychisl. matematike. Otv. redaktor akad. S. L. Sobolev, Nauka, Hovosibirsk, 1980, 110–114

[5] Lebedev V. I., Skorokhodov A. L., “Kvadraturnye formuly dlya sfery 41-, 47- i 53-go poryadkov”, Dokl. RAH, 324:3 (1992), 519–524 | MR | Zbl

[6] Lebedev V. I., “Kvadraturnaya formula dlya sfery 59-go algebraicheskogo poryadka tochnosti”, Dokl. RAH, 338:4 (1994), 454–456 | MR | Zbl

[7] Lebedev V. I., Laikov D. N., “Kvadraturnaya formula dlya sfery 131-go algebraicheskogo poryadka tochnosti”, Dokl. RAH, 366:6 (1999), 741–745 | MR | Zbl

[8] Lebedev V. I., Laikov D. N., “Kvadraturnye formuly dlya sfery gaussova tipa poryadkov 65, 71, 77, 83, 89, 95 i 101”, Kubaturnye formuly i ikh prilozheniya: Materialy 5 mezhdunarodnogo seminara-soveschaniya, Krasnoyarsk, 2000, 106–118

[9] Lebedev V. I., Laikov D. N., “Kvadraturnye formuly dlya sfery gaussovogo tipa poryadkov 107, 113, 119 i 125”, Kubaturnye formuly i ikh prilozheniya, Trudy 6-go mezhdunarodnogo seminara-soveschaniya, Ufa, 2002, 82–94

[10] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[11] Popov A. S., “Poisk nailuchshikh kubaturnykh formul dlya sfery, invariantnykh otnositelno gruppy vraschenii oktaedra”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 5:4 (2002), 367–372

[12] Ditkin V. A., “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhkratnykh integralov”, Dokl. AN SSSR, 62:4 (1948), 445–447 | MR | Zbl

[13] Albrecht J., Collatz L., “Zur numerischen Auswertung mehrdimensionaler Integrale”, Z. Angew. Math. und Mech., 38:1–2 (1958), 1–15 | DOI | MR | Zbl

[14] McLaren A. D., “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | MR | Zbl

[15] Dennis Dzh. (ml.), Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR | Zbl

[16] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | MR