The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 143-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition of the best cubature formula invariant under the octahedral group of rotations with inversion for a sphere is given. The process of searching for the best cubature formulae of the given symmetry type is described. The table which contains the main characteristics of all the best today cubature formulae of the octahedral group of rotations with inversion up to the 53rd algebraic order of accuracy is given. The weights and the coordinates of the new cubature formulae of the 21st, 25th, 27th, 31st and 33rd orders of accuracy are given to 16 significant digits.
@article{SJVM_2005_8_2_a4,
     author = {A. S. Popov},
     title = {The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 143
EP  - 148
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/
LA  - ru
ID  - SJVM_2005_8_2_a4
ER  - 
%0 Journal Article
%A A. S. Popov
%T The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 143-148
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/
%G ru
%F SJVM_2005_8_2_a4
A. S. Popov. The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 143-148. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a4/