On convergence of a~finite difference scheme to solution of the third boundary value problem for a~system of abstract elliptic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 109-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is considered the third boundary value problem for abstract elliptic equations. The problem of stability of solutions to a system of elliptic equations on a restricted domain by non-smooth perturbations of the boundary of this domain is studied. There are proposed a difference scheme for an approximate solution of the considered problem and the conditions for the convergence of solutions of this scheme to the exact solution of the problem.
@article{SJVM_2005_8_2_a2,
     author = {A. G. Kamenskii and G. A. Kamenskii},
     title = {On convergence of a~finite difference scheme to solution of the third boundary value problem for a~system of abstract elliptic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {109--126},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a2/}
}
TY  - JOUR
AU  - A. G. Kamenskii
AU  - G. A. Kamenskii
TI  - On convergence of a~finite difference scheme to solution of the third boundary value problem for a~system of abstract elliptic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 109
EP  - 126
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a2/
LA  - ru
ID  - SJVM_2005_8_2_a2
ER  - 
%0 Journal Article
%A A. G. Kamenskii
%A G. A. Kamenskii
%T On convergence of a~finite difference scheme to solution of the third boundary value problem for a~system of abstract elliptic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 109-126
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a2/
%G ru
%F SJVM_2005_8_2_a2
A. G. Kamenskii; G. A. Kamenskii. On convergence of a~finite difference scheme to solution of the third boundary value problem for a~system of abstract elliptic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 109-126. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a2/

[1] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl

[2] Skubachevskii A. L., “O nekotorykh nelokalnykh ellipticheskikh zadachakh”, Diff. uravneniya, 9 (1982), 1589–1599

[3] Skubachevskii A. L., “O spektre nekotorykh nelokalnykh ellipticheskikh kraevykh zadach”, Matem. sb., 117(159):4 (1982), 548–558 | MR

[4] Kamenskii G. A., Skubachevskii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, Izd-vo MAI, M., 1992 | MR

[5] Skubachevskii A. L., Elliptic functional differential equations and applications, Basel etc., Birkhäuser, 1997 | MR | Zbl

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[8] Goldshtein V. M., “Stepen summiruemosti obobschennykh proizvodnykh kvazikonformnykh gomeomorfizmov”, Sib. matemat. zhurnal, 22:6 (1981), 821–836 | MR