Superconvergence of the gradient for cubic triangular finite elements
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 89-100
Voir la notice de l'article provenant de la source Math-Net.Ru
Superconvergence of the gradient of approximate solutions to second order elliptic equations is analyzed and justified for the 10-node cubic triangular elements. The existence of superconvergent points is proved. A recovery gradient technique in a subdomain is presented. The superclose property is proved. A rigorous proof of the superconvergent error estimate in a recovered gradient function is obtained. Numerical experiments supporting the theory under study are presented.
@article{SJVM_2005_8_2_a0,
author = {A. B. Andreev and T. J. Todorov},
title = {Superconvergence of the gradient for cubic triangular finite elements},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {89--100},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a0/}
}
TY - JOUR AU - A. B. Andreev AU - T. J. Todorov TI - Superconvergence of the gradient for cubic triangular finite elements JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2005 SP - 89 EP - 100 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a0/ LA - en ID - SJVM_2005_8_2_a0 ER -
A. B. Andreev; T. J. Todorov. Superconvergence of the gradient for cubic triangular finite elements. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 89-100. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a0/