Superconvergence of the gradient for cubic triangular finite elements
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 89-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Superconvergence of the gradient of approximate solutions to second order elliptic equations is analyzed and justified for the 10-node cubic triangular elements. The existence of superconvergent points is proved. A recovery gradient technique in a subdomain is presented. The superclose property is proved. A rigorous proof of the superconvergent error estimate in a recovered gradient function is obtained. Numerical experiments supporting the theory under study are presented.
@article{SJVM_2005_8_2_a0,
     author = {A. B. Andreev and T. J. Todorov},
     title = {Superconvergence of the gradient for cubic triangular finite elements},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a0/}
}
TY  - JOUR
AU  - A. B. Andreev
AU  - T. J. Todorov
TI  - Superconvergence of the gradient for cubic triangular finite elements
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2005
SP  - 89
EP  - 100
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a0/
LA  - en
ID  - SJVM_2005_8_2_a0
ER  - 
%0 Journal Article
%A A. B. Andreev
%A T. J. Todorov
%T Superconvergence of the gradient for cubic triangular finite elements
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2005
%P 89-100
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a0/
%G en
%F SJVM_2005_8_2_a0
A. B. Andreev; T. J. Todorov. Superconvergence of the gradient for cubic triangular finite elements. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 8 (2005) no. 2, pp. 89-100. http://geodesic.mathdoc.fr/item/SJVM_2005_8_2_a0/