Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_4_a1, author = {A. A. Bubyakin and Yu. M. Laevsky}, title = {On one approach to constructing schemes of increased order of accuracy in the finite element method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {287--300}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a1/} }
TY - JOUR AU - A. A. Bubyakin AU - Yu. M. Laevsky TI - On one approach to constructing schemes of increased order of accuracy in the finite element method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2004 SP - 287 EP - 300 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a1/ LA - ru ID - SJVM_2004_7_4_a1 ER -
%0 Journal Article %A A. A. Bubyakin %A Yu. M. Laevsky %T On one approach to constructing schemes of increased order of accuracy in the finite element method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2004 %P 287-300 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a1/ %G ru %F SJVM_2004_7_4_a1
A. A. Bubyakin; Yu. M. Laevsky. On one approach to constructing schemes of increased order of accuracy in the finite element method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 4, pp. 287-300. http://geodesic.mathdoc.fr/item/SJVM_2004_7_4_a1/
[1] Mikeladze Sh. B., “O chislennom integrirovanii uravnenii Laplasa i Puassona”, Dokl. AN SSSR, 14:4 (1937), 181–182
[2] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[3] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo IM SO RAN, Novosibirsk, 2000
[4] Lebedev V. I., Tsapelkin E. S., “O vliyanii vybora koordinatnykh funktsii na strukturu uravnenii metoda Galerkina”, Sb. Variatsionno-raznostnye metody v matematicheskoi fizike, Izd-vo VTs SO A N SSSR, Novosibirsk, 1974, 47–58 | MR
[5] Strelkov N. A., “O lokalnoi approksimatsii proektsionno-raznostnykh metodov”, Zhurn. vychisl. matem. i mat. fiziki, 34:2 (1994), 201–213 | MR | Zbl
[6] Il'in V. P., Laevsky Yu. M., “On the compact schemes of high order accuracy in finite element method”, Rus. J. of Numer. Anal. and Math. Modell., 17:1 (2002), 25–39 | MR
[7] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[8] Bubyakin A. A., Laevskii Yu. M., “Ob odnoi variatsionno-raznostnoi skheme povyshennogo poryadka tochnosti resheniya trekhmernogo uravneniya Puassona”, Vestnik NGU, 2:2 (2002), 19–31 | Zbl
[9] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN Arm. SSR, Erevan, 1979 | MR
[10] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl