Refinement of convergence conditions of the Chebyshev method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 249-260
Voir la notice de l'article provenant de la source Math-Net.Ru
The iterative Chebyshev method of an approximate solution of equations of the form $F(x)=0$ in Banach
spaces is studied, assuming that $F''$ satisfies the Lipschitz condition. Accurate (attainable) estimates of the
domains of existence and uniqueness of solution, non-refinable conditions of existence and convergence of the
Chebyshev method as well as asymptotic estimates of the rate of convergence have been obtained.
@article{SJVM_2004_7_3_a6,
author = {M. I. Nechepurenko},
title = {Refinement of convergence conditions of the {Chebyshev} method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {249--260},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a6/}
}
M. I. Nechepurenko. Refinement of convergence conditions of the Chebyshev method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 249-260. http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a6/