Refinement of convergence conditions of the Chebyshev method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 249-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The iterative Chebyshev method of an approximate solution of equations of the form $F(x)=0$ in Banach spaces is studied, assuming that $F''$ satisfies the Lipschitz condition. Accurate (attainable) estimates of the domains of existence and uniqueness of solution, non-refinable conditions of existence and convergence of the Chebyshev method as well as asymptotic estimates of the rate of convergence have been obtained.
@article{SJVM_2004_7_3_a6,
     author = {M. I. Nechepurenko},
     title = {Refinement of convergence conditions of the {Chebyshev} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {249--260},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a6/}
}
TY  - JOUR
AU  - M. I. Nechepurenko
TI  - Refinement of convergence conditions of the Chebyshev method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 249
EP  - 260
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a6/
LA  - ru
ID  - SJVM_2004_7_3_a6
ER  - 
%0 Journal Article
%A M. I. Nechepurenko
%T Refinement of convergence conditions of the Chebyshev method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 249-260
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a6/
%G ru
%F SJVM_2004_7_3_a6
M. I. Nechepurenko. Refinement of convergence conditions of the Chebyshev method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 249-260. http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a6/

[1] Chebyshev P. L., Sobr. sochin., T. 5, AN SSSR, M., 1951, 7–25 | Zbl

[2] Nechepurenko M. I., “O metode Chebysheva dlya funktsionalnykh uravnenii”, Uspekhi matem. nauk, 9:2(60) (1954), 163–170 | MR

[3] Mirakov V. E., “O printsipe mazhorant dlya metoda Chebysheva”, Uspekhi matem. nauk, 11:3 (1956), 171–174 | MR | Zbl

[4] Kantorovich L. V., “Nekotorye dalneishie primeneniya printsipa mazhorant”, Doklady AN SSSR, 80:6 (1951), 849–850

[5] Mertvetsova M. A., “Ob odnom metode priblizhennogo resheniya nelineinykh funktsionalnykh uravnenii”, Izv. Kazanskogo filiala AN SSSR. Ser. matem., 1955, no. 8, 154–167

[6] Kaazik Yu. A., “Ob odnom klasse iteratsionnykh protsessov dlya priblizheniya reshenii operatornykh uravnenii”, Doklady AN SSSR, 112:4 (1957), 579–582 | MR | Zbl

[7] Ulm S. Yu., “O skhodimosti sposoba kasatelnykh parabol dlya veschestvennogo uravneniya pri usloviyakh tipa Koshi”, Izvestiya AN Eston. SSR. Ser. tekhn. i fiz.-matem. nauk, 8:4 (1959), 296–299 | MR

[8] Dragun V. A., Fedenko N. P., “O metode Chebysheva”, Vestn. Belorus. un-ta. Ser. 1, 1991, no. 1, 51–53 | MR | Zbl

[9] Hettlich F., Rundell W., “A second degree method for nonlinear inverse problems”, SIAM J. Numer. Anal., 37:2 (1999), 587–620 | DOI | MR

[10] Nechepurenko M. I., “O skhodimosti metoda Chebysheva”, DAN, 393:5 (2003), 597–599 | MR