Two multigrid iterative algorithms for a~discrete analogue of the biharmonic equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 213-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

A standard scheme of the finite element method with the use of bicubic elements on a rectangular quasiuniform grid is considered as applied to the two-dimensional Dirichlet problem for the biharmonic equation in a rectangle. To solve this scheme, two multigrid algorithms are treated on a sequence of embedded rectangular grids: a full multigrid with $V$-cycle and a simpler cascadic algorithm. The presence of angular points of a rectangle results in deficiency of solution smoothness which complicates substantiation of convergence of the algorithm as compared to a smooth case. At the same time, a number of arithmetical operations remains almost optimal for the cascadic algorithm and optimal for $V$-cycles.
@article{SJVM_2004_7_3_a3,
     author = {L. V. Gilyova and V. V. Shaidurov},
     title = {Two multigrid iterative algorithms for a~discrete analogue of the biharmonic equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {213--228},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a3/}
}
TY  - JOUR
AU  - L. V. Gilyova
AU  - V. V. Shaidurov
TI  - Two multigrid iterative algorithms for a~discrete analogue of the biharmonic equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 213
EP  - 228
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a3/
LA  - ru
ID  - SJVM_2004_7_3_a3
ER  - 
%0 Journal Article
%A L. V. Gilyova
%A V. V. Shaidurov
%T Two multigrid iterative algorithms for a~discrete analogue of the biharmonic equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 213-228
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a3/
%G ru
%F SJVM_2004_7_3_a3
L. V. Gilyova; V. V. Shaidurov. Two multigrid iterative algorithms for a~discrete analogue of the biharmonic equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 213-228. http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a3/

[1] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Trudy Moskovskogo matematicheskogo obschestva, 16, 1967, 209–292

[2] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[4] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[5] Shaidurov V. V., Tobiska L., “The convergence of the cascadic conjugate-gradient method applied to elliptic problems in domains with re-entrant corners”, Math. Comput., 69:230 (1999), 501–520 | DOI | MR

[6] Shaidurov V. V., “The convergence of the cascadic conjugate-gradient method under a deficient regularity”, Problems and Methods in Mathematical Physics, Teubner, Stuttgart, 1994, 185–194 | MR | Zbl

[7] Grisvard P., Singularities in Boundary Value Problems, Masson-Springer, Paris – Berlin, 1992 | MR | Zbl

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[9] Koldorkina V. A., “O resheniyakh uravneniya $\Delta\Delta u=f$ v kusochno-gladkoi oblasti”, Diff. uravn., 8:2 (1972), 374–376 | MR | Zbl