Monotonicity and discretization error estimates for convection-diffusion problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 189-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

Monotone operators provide a basis for pointwise bounds of the solution and discretization errors. We apply this technique for convection-diffusion problems, including an anisotropic diffusion term and show that the discretization error has a higher order of accuracy near Dirichlet boundaries or, alternatively, the second order of the global error remains even if we use a lower order of approximation near the Dirichlet boundary.
@article{SJVM_2004_7_3_a1,
     author = {O. Axelsson and S. V. Gololobov},
     title = {Monotonicity and discretization error estimates for convection-diffusion problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {189--202},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a1/}
}
TY  - JOUR
AU  - O. Axelsson
AU  - S. V. Gololobov
TI  - Monotonicity and discretization error estimates for convection-diffusion problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 189
EP  - 202
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a1/
LA  - en
ID  - SJVM_2004_7_3_a1
ER  - 
%0 Journal Article
%A O. Axelsson
%A S. V. Gololobov
%T Monotonicity and discretization error estimates for convection-diffusion problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 189-202
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a1/
%G en
%F SJVM_2004_7_3_a1
O. Axelsson; S. V. Gololobov. Monotonicity and discretization error estimates for convection-diffusion problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 3, pp. 189-202. http://geodesic.mathdoc.fr/item/SJVM_2004_7_3_a1/

[1] Axelsson O., Kolotilina L., “Monotonicity and discretization error estimates”, SIAM J. Numer. Anal., 27 (1990), 1591–1611 | DOI | MR | Zbl

[2] Collatz L., Funktionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin – New York, 1964 | MR | Zbl

[3] Scott E. J., “Green's functions in an octant for mixed problems relative to the Laplace equation”, Appl. Math. Comput., 7 (1980), 321–339 | DOI | MR | Zbl

[4] Shishkin G. I., Grid approximation of singularly perturbed elliptic and parabolic problems, Second doctoral thesis, Keldysh Institute, Russian Academy of Sciences, Moscow, 1990 (in Russian)

[5] Shortley G. H., Weller R., “The numerical solution of Laplace's equation”, J. Appl. Phys., 9 (1938), 334–348 | DOI

[6] Stieltjes T. J., “Sur les racines de $X_n=0$”, Acta Math., 9 (1987), 385–400 | DOI | MR

[7] Li Z.-C., Yamamoto T., Fang Q., “Superconvergence of solution derivatives for the Shortley–Weller difference approximation of Poisson's equation. I: Smoothness problems”, J. Comput. Appl. Math., 151 (2003), 307–333 | DOI | MR | Zbl