Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_2_a5, author = {I. B. Palymskiy}, title = {Linear and nonlinear analysis of the numerical method for the calculation of convective flows}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {143--163}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a5/} }
TY - JOUR AU - I. B. Palymskiy TI - Linear and nonlinear analysis of the numerical method for the calculation of convective flows JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2004 SP - 143 EP - 163 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a5/ LA - ru ID - SJVM_2004_7_2_a5 ER -
I. B. Palymskiy. Linear and nonlinear analysis of the numerical method for the calculation of convective flows. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 143-163. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a5/
[1] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M.
[2] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972
[3] Yahata H., “Onset of chaos in the Rayleigh–Benard convection”, Progr. Theor. Phys. Suppl., 79 (1984), 26–74 | DOI | MR
[4] Gertsenshtein S. Ya., Romashova V. M., “Konvektivnaya ustoichivost ploskogo sloya provodyaschei zhidkosti v magnitnom pole”, Dokl. RAN, 349:6 (1996), 761–763 | MR | Zbl
[5] Gertsenshtein S. Ya., Rodichev E. B., Shmidt V. M., “Vzaimodeistvie trekhmernykh voln vo vraschayuschemsya gorizontalnom sloe zhidkosti, podogrevaemom snizu”, DAN SSSR, 238:3 (1978), 545–548
[6] Gertsenshtein S. Ya., Shmidt V. M., “O nelineinom razvitii i vzaimodeistvii konvektivnykh voln v gorizontalnom sloe”, DAN SSSR, 225:1 (1975), 59–62
[7] Gertsenshtein S. Ya., Rodichev E. B., “O modelyakh perekhoda k turbulentnosti pri konvektivnoi neustoichivosti”, Modelirovanie v mekhanike, 3(20):4 (1989), 59–65 | MR
[8] Gelfgat Alexander Yu., “Different modes of Rayleigh-Benard instability in two-and threedimensional rectangular enclosures”, J. Comput. Physics, 156 (1999), 300–324 | DOI | Zbl
[9] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two-and threedimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl
[10] Grotzbach G., “Direct numerical simulation of laminar and turbulent Benard convection”, J. Fluid Mech., 119 (1982), 27–53 | DOI
[11] Tarunin E. L., Vychislitelnyi eksperiment v zadachakh svobodnoi konvektsii, Irkutskii universitet, Irkutsk, 1990
[12] Daly B. J., “A numerical study of turbulent transitions in convective flow”, J. Fluid Mech., 64 (1974), 129–165 | DOI | Zbl
[13] Grotzbach G., “Spatial resolution requirements for direct numerical simulation of the Rayleigh–Benard convection”, J. Comput. Physics, 49 (1983), 241–264 | DOI
[14] Getling A. V., “Nelineinaya evolyutsiya nepreryvnogo spektra dvumernykh vozmuschenii v zadache Benara–Releya”, DAN SSSR, 233:2 (1977), 308–311 | Zbl
[15] Babenko K. I., Rakhmanov A. I., Chislennoe issledovanie dvumernoi konvektsii, Preprint IPM AN; 118, Moskva, 1988, 26 pp. | MR
[16] Petrovskaya N. V., “O primenenii metoda Galerkina k issledovaniyu perekhodov v zadache releevskoi konvektsii”, Izv. AN SSSR Seriya MZhG, 1984, no. 2, 22–27 | Zbl
[17] Rodichev E. B., Rodicheva O. V., “O dvumernoi turbulentnosti v zadache Releya–Benara”, Dokl. AN SSSR, 359:4 (1998), 486–489 | MR | Zbl
[18] Zienicke E., Seehafer N., Feudel F., “Bifurcations in two-dimensional Rayleigh–Benard convection”, Phys. Rev. E, 57:1 (1998), 428–435 | DOI | MR
[19] Pallares J., Grau F. X., “Giralt Francesc. Flow transitions in laminar Rayleigh–Benard convection in a cubical cavity at moderate Rayleigh numbers”, Int. J. Heat and Mass Transfer, 42:4 (1999), 753–769 | DOI | Zbl
[20] Deardorff J. W., Willis G. E., “The effect of two-dimensionality on the suppression of thermal turbulence”, J. Fluid Mech., 23:2 (1965), 337–353 | DOI
[21] Veronis G., “Large-amplitude Benard convection”, J. Fluid Mechanics, 26:1 (1966), 49–68 | DOI | MR | Zbl
[22] Moore D. R., Weiss N. O., “Two-dimensional Rayleigh–Benard convection”, J. Fluid Mech., 58:2 (1973), 289–312 | DOI | Zbl
[23] Goldhirsch I., Pelz R. B., Orszag S. A., “Numerical simulation of thermal convection in a two-dimensional finite box”, J. Fluid Mech., 199 (1989), 1–28 | DOI | MR | Zbl
[24] Palymskiy I. B., “Determinism and chaos in the Rayleigh–Benard convection”, Proc. of the second international conference on Applied Mechanics and Materials (ICAMM 2003, January 21–23), Durban, South Africa, 2003, 139–144
[25] Palymskiy I. B., “Numerical investigation stochastic convection of chemically equilibrium gas”, Proc. of the second international conference on Applied Mechanics and Materials (ICAMM 2003, January 21–23), Durban, South Africa, 2003, 145–150
[26] McLaughlin J. B., Orszag S. A., “Transition from periodic to chaotic thermal convection”, J. Fluid Mech., 122 (1982), 123–142 | DOI | Zbl
[27] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mechanocs, 310 (1996), 139–179 | DOI | Zbl
[28] Werne J., DeLuca E. E., Rosner R., Cattaneo F., “Numerical simulation of soft and hard turbulence: preliminary results for two-dimensional convection”, Physical Review Letters, 64:20 (1990), 2370–2373 | DOI
[29] Nikitin H. B., Polezhaev V. I., “Trekhmernye effekty perekhodnykh i turbulentnykh rezhimov teplovoi gravitatsionnoi konvektsii v metode Chokhralskogo”, Izvestiya RAN Seriya MZhG, 1999, no. 6, 81–90 | Zbl
[30] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl
[31] Ponomarev S. G., Stoinov M. I., Reshenie uravnenii Nave–Stoksa proektsionnymi metodami; vychislenie nelineinykh chlenov, Preprint, IPM AN SSSR; 58, Moskva, 1987, 18 pp. | MR
[32] Palymskii I. B., “Metod chislennogo modelirovaniya konvektivnykh techenii”, Vychislitelnye tekhnologii, 5:6 (2000), 53–61 | MR
[33] Nikitin N. V., “Spektralno-konechnoraznostnyi metod rascheta turbulentnykh techenii neszhimaemykh zhidkostei v trubakh i kanalakh”, Zhurn. vychisl. matematiki i mat. fiziki, 34:6 (1994), 909–925 | MR | Zbl
[34] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave–Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint IPM AN SSSR; 119, M., 1987, 28 pp. | MR
[35] Palymskii I. B., “Kachestvennyi analiz raznostnykh skhem dlya modelnogo nelineinogo uravneniya so znakoperemennoi vyazkostyu”, Differentsialnye uravneniya, 28:12 (1992), 2148–2158 | MR
[36] Palymskii I.B., Chislennoe modelirovanie konvektivnykh techenii pri vysokikh chislakh Veissenberga, Preprint ITPM SO AN SSSR; 15, Novosibirsk, 1988, 48 pp. | MR
[37] Farhadien R., Tankin R. S., “Interferometric study of two-dimensional Benard convection cells”, J. Fluid Mechanics, 6:4 (1974), 739–752 | DOI
[38] Deardorff J. W., Willis G. E., “Investigation of turbulent thermal convection between horizontal plates”, J. Fluid Mechanics, 28 (1967), 675–704 | DOI
[39] Chu T. Y., Goldstein R. J., “Turbulent convection in a horizontal layer of water”, J. Fluid Mechanics, 60:1 (1973), 141–159 | DOI
[40] Thomas D. B., Townsend A. A., “Turbulent convection over a heated horizontal surface”, J. Fluid Mech., 2 (1957), 473–492 | DOI | Zbl
[41] Rossby H. T., “A study of Benard convection with and without rotation”, J. Fluid Mechanics, 36 (1969), 309–335 | DOI
[42] Threlfall D. C., “Free convection in low-temperature gaseous helium”, J. Fluid Mech., 67:1 (1975), 17–28 | DOI
[43] Kronover P. M., Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000